Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.....\frac{99^2}{98.100}\)
\(A=\frac{\left(2.3.4.5.....99\right).\left(2.3.4.5.....99\right)}{\left(1.2.3.4.....98\right).\left(3.4.5.6.....100\right)}\)
\(A=\frac{99.2}{100}=\frac{99}{50}\)
Học tốt!!!!
A=12/1.2 . 22/2.3 . 32/3.4 . 42/4.5 . 52/5.6
⇒1.1/1.2 . 2.2/2.3 . 3.3/3.4 . 4.4/4.5 . 5.5/5.6
⇒1.2.3.4.5/1.2.3.4.5 . 1.2.3.4.5/2.3.4.5.6
⇒1 . 1/6 =1/6.
Vậy A=1/6
B=22/1.3 . 32/2.4 . 42/3.5 . 52/4.6
⇒2.2/1.3 . 3.3/2.4 . 4.4/3.5 . 5.5/4.6
⇒2.2.3.3.4.4.5.5/1.3.2.4.3.5.4.6 =48.
Vậy B=48.
A = (2.3.4. .... .999/1.2.3. .... .998) . (2.3.4. .... .999/3.4.5. ..... .1000)
= 999. 2/1000
= 999/500
Tk mk nha
\(A=\dfrac{2^2}{1\cdot3}\cdot\dfrac{3^2}{2\cdot4}\cdot\dfrac{4^2}{3\cdot5}\cdot...\cdot\dfrac{999^2}{998\cdot1000}\\ =\dfrac{2^2\cdot3^2\cdot4^2\cdot...\cdot999^2}{1\cdot3\cdot2\cdot4\cdot3\cdot5\cdot...\cdot998\cdot1000}\\ =\dfrac{\left(2\cdot3\cdot4\cdot...\cdot999\right)\cdot\left(2\cdot3\cdot4\cdot...\cdot999\right)}{\left(1\cdot2\cdot3\cdot...\cdot998\right)\cdot\left(3\cdot4\cdot5\cdot...\cdot1000\right)}\\ =\dfrac{2\cdot3\cdot4\cdot...\cdot999}{1\cdot2\cdot3\cdot...\cdot998}\cdot\dfrac{2\cdot3\cdot4\cdot...\cdot999}{3\cdot4\cdot5\cdot...\cdot1000}\\ =999\cdot\dfrac{1}{500}\\ =\dfrac{999}{500}\)
\(B=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}......\frac{10^2}{9.11}=\frac{\left(1.2.3.....10\right)^2}{\left(1.2.3.....9\right).\left(3.4.5....9.10.11\right)}=\frac{\left(1.2.3....10\right)^2}{\left(1.2\right)\left(3.4.5.....9\right)^2\left(10.11\right)}=\frac{\left(1.2.10\right)^2}{\left(1.2\right).\left(10.11\right)}=\frac{1.2.10}{11}=\frac{20}{11}\)
a,\(\frac{2}{3.5}+\frac{2}{5.7}+.......+\frac{2}{11.13}\)
=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.............+\frac{1}{11}-\frac{1}{13}\)
=\(\frac{1}{3}-\frac{1}{13}\)
=\(\frac{10}{39}\)
b,Đặt A=\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+.............+\frac{1}{27.28.29.30}\)
3A=\(\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...........+\frac{3}{27.28.29.30}\)
3A=\(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+.............+\frac{1}{27.28.29}-\frac{1}{28.29.30}\)
3A=\(\frac{1}{1.2.3}-\frac{1}{28.29.30}\)
3A=\(\frac{1}{6}-\frac{1}{24360}\)
3A=\(\frac{1353}{8120}\)
A=\(\frac{451}{8120}\)
a.
\(M=1.\left[\frac{1}{3}-\frac{1}{5}+.....\frac{1}{97}-\frac{1}{99}\right]\)
\(M=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
b.
\(N=\frac{3}{2}.\left[\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{197}-\frac{1}{199}\right]\)
\(N=\frac{3}{2}.\left[\frac{1}{5}-\frac{1}{199}\right]=\frac{291}{995}\)
mk đầu tiên nha bạn