K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2019

\(a,\frac{1}{3x-2}-\frac{1}{3x+2}-\frac{3x-6}{4-9x^2}\)

\(=\frac{1}{3x-2}-\frac{1}{3x+2}+\frac{3\left(x-2\right)}{\left(3x+2\right)\left(3x-2\right)}\)

\(=\frac{3x+2-\left(3x-2\right)+3\left(x-2\right)}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\frac{3x+2-3x+2+3x-6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\frac{3x-2}{\left(3x-2\right)\left(3x+2\right)}=\frac{1}{3x+2}\)

1 tháng 12 2019

\(b,\frac{18}{\left(x-3\right)\left(x^2-9\right)}-\frac{3}{x^2-6x+9}-\frac{x}{x^2-9}\)

\(=\frac{18}{\left(x-3\right)\left(x-3\right)\left(x+3\right)}-\frac{3}{\left(x-3\right)\left(x-3\right)}-\frac{x}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{18-3\left(x+3\right)-x\left(x-3\right)}{\left(x-3\right)\left(x-3\right)\left(x+3\right)}\)

\(=\frac{18-3x-9-x^2+3x}{\left(x-3\right)\left(x-3\right)\left(x+3\right)}\)

\(=\frac{-x^2+9}{\left(x-3\right)\left(x-3\right)\left(x+3\right)}\)

\(=\frac{-\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x-3\right)\left(x+3\right)}=-\frac{1}{x-3}\)

8 tháng 8 2018

\(\frac{1}{3x-2}-\frac{1}{3x+2}-\frac{3x-6}{4-9x^2}\)

\(=\frac{3x+2}{9x^2-4}-\frac{3x-2}{9x^2-4}+\frac{3x-6}{9x^2-4}\)

\(=\frac{3x+2-3x+2+3x-6}{9x^2-4}\)

\(=\frac{3x-2}{9x^2-4}\)

\(=\frac{1}{3x+2}\)

\(\frac{18}{\left(x-3\right)\left(x^2-9\right)}-\frac{3}{x^2-6x+9}-\frac{x^2}{x^2-9}\)

\(=\frac{18}{\left(x-3\right)\left(x-3\right)\left(x+3\right)}\) \(-\frac{3\left(x+3\right)}{\left(x-3\right)\left(x-3\right)\left(x+3\right)}\)\(-\frac{x^2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)\left(x-3\right)}\)

\(=\frac{18-3x-9-x^3+3x^2}{\left(x-3\right)^2\left(x+3\right)}\)

\(=\frac{-x^3+3x^2-3x+9}{\left(x-3^2\right)\left(x+3\right)}\)

\(=\frac{\left(-x^2-3\right)\left(x-3\right)}{\left(x-3^2\right)\left(x+3\right)}\)

\(=\frac{-x^2-3}{\left(x-3\right)\left(x+3\right)}\)

học tốt

11 tháng 12 2019

\(a)=\frac{-2\left(x+3\right)}{x\left(1-3x\right)}.\frac{1-3x}{x\left(x+3\right)}\)

\(=\frac{-2}{x^2}\)

\(b)=\frac{\left(x+3\right)\left(x-3\right)}{x\left(x-3\right)}-\frac{x^2}{x\left(x-3\right)}+\frac{9}{x\left(x-3\right)}\)

\(=\frac{x^2-3x+3x-9-x^2+9}{x\left(x-3\right)}\)

\(=x\left(x-3\right)\)

\(c)=\frac{x+3}{\left(x-1\right)\left(x+1\right)}-\frac{1}{x\left(x+1\right)}\)

\(=\frac{\left(x+3\right).x}{x\left(x-1\right)\left(x+1\right)}-\frac{1.\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x^2+3x-x+1}{x\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x\left(x+3\right)-\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x+3}{x+1}\)

# Sắp ik ngủ nên làm vậy hoi, ko chắc phần kq câu b và c đâu nha

ĐKXĐ : \(\hept{\begin{cases}x-2\ne0\\3-4x\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne2\\x\ne\frac{3}{4}\end{cases}}}\)

\(\frac{5}{x-2}+\frac{6}{3-4x}=0\)

\(\frac{5\left(3-4x\right)}{\left(x-2\right)\left(3-4x\right)}+\frac{6\left(x-2\right)}{\left(3-4x\right)\left(x-2\right)}=0\)

\(15-20x+6x-12=0\)

\(3-14x=0\Leftrightarrow14x=3\Leftrightarrow x=\frac{3}{14}\)theo ĐKXĐ : x thỏa mãn 

21 tháng 7 2019

\(\frac{3x}{5x+5y}-\frac{x}{10x-10y}\)

= \(\frac{3x\left(x-y\right)}{5.2.\left(x+y\right)\left(x-y\right)}-\frac{x\left(x+y\right)}{10\left(x^2-y^2\right)}\)

= \(\frac{3x^2-3xy-x^2-xy}{10\left(x^2-y^2\right)}\)

= \(\frac{3x\left(x-y\right)}{10\left(x^2-y^2\right)}\)

= \(\frac{3x}{10\left(x+y\right)}\)

Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0 1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\) c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\) e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\) g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h,...
Đọc tiếp

Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0

1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)

c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)

e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\)

g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h, \(\frac{x+4}{5}.x+4=\frac{x}{3}-\frac{x-2}{2}\)

i, \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\); k, \(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\)

m, \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\); n, \(\frac{1}{4}\left(x+3\right)=3-\frac{1}{2}\left(x+1\right).\frac{1}{3}\left(x+2\right)\)

p, \(\frac{x}{3}-\frac{2x+1}{6}=\frac{x}{6}-x\); q, \(\frac{2+x}{5}-0,5x=\frac{1-2x}{4}+0,25\)

r, \(\frac{3x-11}{11}-\frac{x}{3}=\frac{3x-5}{7}-\frac{5x-3}{9}\); s, \(\frac{9x-0,7}{4}-\frac{5x-1,5}{7}=\frac{7x-1,1}{6}-\frac{5\left(0,4-2x\right)}{6}\)

t, \(\frac{2x-8}{6}.\frac{3x+1}{4}=\frac{9x-2}{8}+\frac{3x-1}{12}\); u, \(\frac{x+5}{4}-\frac{2x-3}{3}=\frac{6x-1}{3}+\frac{2x-1}{12}\)

v, \(\frac{5x-1}{10}+\frac{2x+3}{6}=\frac{x-8}{15}-\frac{x}{30}\); w, \(\frac{2x-\frac{4-3x}{5}}{15}=\frac{7x\frac{x-3}{2}}{5}-x+1\)

17

Đây là những bài cơ bản mà bạn!

29 tháng 3 2020

bạn ấy muốn thách xem bạn nào đủ kiên nhẫn đánh hết chỗ này