K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2015

0.00030072865

0.00030072865 nha

12 tháng 9 2018

\(\frac{4^{20}-2^{20}+6^{20}}{6^{20}-3^{20}+9^{20}}\)=\(\frac{2^{40}-2^{20}+2^{20}.3^{20}}{3^{20}.2^{20}-3^{20}+3^{40}}\)=\(\frac{2^{20}.\left(2^{20}-1+3^{20}\right)}{3^{20}.\left(2^{20}-1+3^{20}\right)}\)=\(\frac{2^{20}}{3^{20}}\)

Nhớ k nhá

19 tháng 3 2020

\(\frac{4^{20}-2^{20}+6^{20}}{6^{20}-3^{20}+9^{20}}=\frac{\left(2^2\right)^{20}-2^{20}+\left(3.2\right)^{20}}{\left(3.2\right)^{20}-3^{20}+\left(3^2\right)^{20}}=\frac{2^{20}.2^{20}-2^{20}.1+3^{20}.2^{20}}{3^{20}.2^{20}-3^{20}.1+3^{20}.3^{20}}=\frac{2^{20}.\left(2^{20}-1+3^{20}\right)}{3^{20}.\left(2^{20}-1+3^{20}\right)}=\frac{2^{20}}{3^{20}}=\left(\frac{2}{3}\right)^{20}=\frac{40}{60}=\frac{2}{3}\)

19 tháng 3 2020

Chúc bạn học tốt nha!

2 tháng 7 2017

\(\dfrac{4^{20}-2^{20}+6^{20}}{6^{20}-3^{20}+9^{20}}=\dfrac{2^{20}.2^{20}-2^{20}+3^{20}.2^{20}}{2^{20}.3^{20}-3^{20}+3^{20}.3^{20}}=\dfrac{\left(2^{20}-1+3^{20}\right).2^{20}}{\left(2^{20}-1+3^{20}\right).3^{20}}=\dfrac{2^{20}}{3^{20}}\)

21 tháng 9 2017

\(\frac{4^{20}-2^{20}+6^{20}}{6^{20}-3^{20}+9^{20}}=\frac{2^{20}\cdot2^{20}-2^{20}+2^{20}\cdot3^{20}}{2^{20}\cdot3^{20}-3^{20}+3^{20}\cdot3^{20}}=\frac{2^{20}\left[2^{20}-1+3^{20}\right]}{3^{20}\left[2^{20}-1+3^{20}\right]}=\frac{2^{20}}{3^{20}}\)

28 tháng 11 2018

trả lời hộ mình nha

18 tháng 3 2020

Tính:

\(\frac{4^{20}-2^{20}+6^{20}}{6^{20}-3^{20}+9^{20}}\)

\(=\frac{\left(2.2\right)^{20}-2^{20}+\left(2.3\right)^{20}}{\left(3.2\right)^{20}-3^{20}+\left(3.3\right)^{20}}\)

\(=\frac{2^{20}.2^{20}-2^{20}+2^{20}.3^{20}}{3^{20}.2^{20}-3^{20}+3^{20}.3^{20}}\)

\(=\frac{2^{20}.2^{20}-2^{20}.1+2^{20}.3^{20}}{3^{20}.2^{20}-3^{20}.1+3^{20}.3^{20}}\)

\(=\frac{2^{20}.\left(2^{20}-1+3^{20}\right)}{3^{20}.\left(2^{20}-1+3^{20}\right)}\)

\(=\frac{2^{20}}{3^{20}}\)

\(=\left(\frac{2}{3}\right)^{20}.\)

Chúc bạn học tốt!

7 tháng 10 2019

\(A=\frac{4^{20}-2^{20}+6^{20}}{6^{20}-3^{20}+9^{20}}\)

\(A=\frac{2^{20}.2^{20}-2^{20}+3^{20}.2^{20}}{2^{20}.3^{20}-3^{20}+3^{20}.3^{20}}\)

\(A=\frac{\left(2^{20}-1+3^{20}\right).2^{20}}{\left(2^{20}-1+3^{20}\right).3^{20}}\)

\(\Rightarrow A=\frac{2^{20}}{3^{20}}\)