Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}=1024\)
\(M=\frac{8^{20}+4^{20}}{4^{25}+64^5}\)
\(=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}\)
\(=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}\)
\(=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}\)
\(=\frac{2^{40}}{2^{30}}=2^{10}\)
\(\frac{8^{20}+4^{20}}{4^{25}+64^5}\)
\(=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}\)
\(=\frac{2^{60}+2^{40}}{2^{25}+2^{30}}\)
\(=\frac{2^{40}\left(2^{20}+1\right)}{2^{25}\left(1+2^5\right)}\)
\(=\frac{2^{15}\left(2^{20}+1\right)}{1+2^5}\)
\(=\frac{2^{35}+2^{15}}{1+2^5}\)
Bài làm:
\(64^3.4^5.16^2=2^{18}.2^{10}.2^8=2^{36}\)
\(25^{20}.125^4=5^{40}.5^{12}=5^{52}\)
\(x^7.x^4.x^3=x^{14}\)
64^3.4^5.16^2=2^18.2^10..2^8=36
25^20.125^4=5^40.5^12=5^52
x^7.x^4.x^3=x^14
S= (2.1)^2 + (2.2)^2 +(2.3)^2 + .... + (2.10)^2
S= 2^2 (1^2 + 2^2 + 3^2+....+10^2)
S = 4. 385=1540
b) (8/2)^n = 4
4^n =4^1
Vậy n =1
\(99^{20}=\left(99^2\right)^{10}=9810^{10}\)
Mà \(9810^{10}< 9999 ^{10}=>99^{20}< 9999^{10}\)
Vậy ...............
\(\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}\)
\(=\frac{2^{40}.\left(2^{20}+1\right)}{2^{30}.\left(2^{20}+1\right)}=\frac{2^{40}}{2^{30}}=\frac{2^{30}.2^{10}}{2^{30}}=2^{10}=1024\)
\(\frac{8^{20}+4^{20}}{4^{25}+64^5}=1024\)