Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Để A có GTNN thì |2.x-1/3| phải có GTNN
\(\Rightarrow\)|2.x-1/3|=0 \(\Leftrightarrow\)x=1/6
A có GTNN =107 khi x=1/6
b,(3x-5)^20 với mọi x
Để A có GTNN (3x-5)^2 phải có GTNN
\(\Rightarrow\)(3x-5)^2=0 \(\Leftrightarrow\)x=5/3
B co GTNN =-2015 khi x=5/3
c,Để C có GTLN khi |2x-3| phải có GTNN
\(\Rightarrow\)|2X-3|=0 \(\Leftrightarrow\)X=1,5
C co GTLN =1 khi x=1,5
đ,(4-2x)^2 0 với mọi x
Để D có GTLN khi (4-2x)^2 phải có GTNN
\(\Rightarrow\)(4-2x)^2=0 \(\Leftrightarrow\)x=2
D có GTLN =2016 khi x=2
Bài 1:
$2^{x+1}.3^y=12^x=(2^2.3)^x=2^{2x}.3^x$
$\Rightarrow x+1=2x$ và $y=x$
$\Rightarrow x=1$ và $y=x$
$\Rightarrow x=y=1$
Bài 2:
a. $P(x)=|2x-6|+|2x-2|=6$
$\Rightarrow 2|x-3|+2|x-1|=6$
$\Rightarrow |x-3|+|x-1|=3(*)$
Nếu $x\geq 3$ thì $(*)$ trở thành:
$x-3+x-1=3$
$\Rightarrow 2x-4=3\Rightarrow x=\frac{7}{2}$ (tm)
Nếu $3> x\geq 1$ thì $(*)$ trở thành:
$3-x+x-1=3$
$\Rightarrow 2=3$ (vô lý - loại)
Nếu $x<1$ thì $(*)$ trở thành:
$3-x+1-x=3$
$\Rightarrow 4-2x=3$
$\Rightarrow x=\frac{1}{2}$ (tm)
Vậy..........
b.
Ta có: $P(x)=2(|x-1|+|x-3|)=2(|x-1|+|3-x|)\geq 2|x-1+3-x|=2.2=4$
Vậy $P(x)_{\min}=4$
Giá trị này đạt tại $(x-1)(3-x)\geq 0$
$\Rightarrow 1\leq x\leq 3$
Lời giải:
Vì $|y+5|\geq 0$ với mọi $y$
$\Rightarrow -2|y+5|\leq 0$ với mọi $y$
$\Rightarrow B=-2|y+5|-3\leq -3$
Vậy $B_{\max}=-3$ khi $y+5=0\Leftrightarrow y=-5$
--------------------
Vì $|x+3|\geq 0$ với mọi $x$
$\Rightarrow C=|x+3|-2\geq -2$
Vậy $C_{\min}=-2$ khi $x+3=0\Leftrightarrow x=-3$
-----------------
$|2x-1|\geq 0$ với mọi $x$
$\Rightarrow D=3|2x-1|+\frac{3}{2}\geq 3.0+\frac{3}{2}=\frac{3}{2}$
Vậy $D_{\min}=\frac{3}{2}$ khi $x=\frac{1}{2}$
GTNN của C là tại x=1/2
GTLN của D là 2015 tại x=3
X = 3
Ai k mik mik k lai