\(\frac{2016×2018+2}{2016×2017+2018}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2020

\(\frac{2016\times2018+2}{2016\times2017+2018}=\frac{2016\times\left(2017+1\right)+2}{2016\times2017+2018}=\)\(=\frac{2016\times2017+2016+2}{2016\times2017+2018}=\frac{2016\times2017+2018}{2016\times2017+2018}=1\)

23 tháng 7 2020

Ta có : \(\frac{2016\times2018+2}{2016\times2017+2018}=\frac{2016\left(2017+1\right)+2}{2016\times2017+2018}=\frac{2016\times2017+2016+2}{2016\times2017+2018}\)

\(=\frac{2016\times2017+2018}{2016\times2017+2018}=1\)

bài 1

Ta có : 2016/2017<1

            2017/2018<1

Nên 2016/2017=2017/2018

4 tháng 5 2018

Bài 1 :

a) Ta có : \(\frac{2016}{2017}=1-\frac{1}{2017}\)

                \(\frac{2017}{2018}=1-\frac{1}{2018}\)

Vì \(-\frac{1}{2017}< -\frac{1}{2018}\)nên \(\frac{2016}{2017}< \frac{2017}{2018}\)

b) Ta có : \(\frac{2018}{2017}=1+\frac{1}{2017}\)

                 \(\frac{2017}{2016}=1+\frac{1}{2016}\)

Vì \(\frac{1}{2017}< \frac{1}{2016}\) nên \(\frac{2018}{2017}< \frac{2017}{2016}\)

Câu 2 : 

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{101.103}\)

\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{101.103}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{101}-\frac{1}{103}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{103}\right)\)

\(=\frac{1}{2}.\frac{102}{103}=\frac{51}{103}\)

23 tháng 4 2017

\(\frac{2016}{2017}< \frac{2017}{2018}\)

Đúng 100%

Đúng 100%

Đúng 100%

23 tháng 4 2017

Ta có:1-2016/2017=1/2017

1-2017/2018=1/2018

Mà 1/2017>1/2018 

nên2016/2017<2017/2018

28 tháng 8 2017

1    \(A=\left(1+\frac{1}{2}\right)\times\left(1+\frac{1}{3}\right)\times\left(1+\frac{1}{4}\right)\times.........\times\left(1+\frac{1}{2016}\right)\times\left(1+\frac{1}{2017}\right)\)

\(A=\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times......\times\frac{2016}{2017}\times\frac{2018}{2017}\)

\(A=\frac{2018}{2}=1009\)

\(B=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+.......+\frac{2}{43.45}\)

\(B=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-......+\frac{1}{43}-\frac{1}{45}\)

\(B=\frac{1}{3}-\frac{1}{45}\)

\(B=\frac{14}{45}\)

2     \(\frac{2017}{2018}\times\frac{23}{47}+\frac{24}{2018}\times\frac{2017}{47}\)

\(=\frac{2017}{2018}\times\frac{23}{47}+\frac{24}{47}\times\frac{2017}{2018}\)

\(=\frac{2017}{2018}\times\left(\frac{23}{47}+\frac{24}{47}\right)\)

\(=\frac{2017}{2018}\times1\)

=\(\frac{2017}{2018}\)

bạn nào xem giải thế có đúng ko

15 tháng 5 2018

\(\frac{2018\cdot2016-1210}{2017\cdot2016+806}=\frac{2017\cdot2016+2016-1210}{2017\cdot2016+806}=\frac{2017\cdot2016+806}{2017\cdot2016+806}=1\)

15 tháng 5 2018

= ( 2017 + 1) . 2016 - 1210 / 2017 . 2016 + 806 

= 2016 .2017 + 2016 - 1210 / 2017 . 2016 + 806 

= 2016 . 2017 + 806 / 2017 . 2016 + 806 

= 1

19 tháng 7 2018

a) So sánh \(\frac{2017}{2018}\)với \(\frac{2017}{2019}\)ta thấy \(\frac{2017}{2018}\) lớn hơn\(\frac{2017}{2019}\)(vì có chung tử nên số nào có mẫu lớn hơn thì nhỏ hơn và ngược lại

  Tương tự so sánh \(\frac{2017}{2019}\)với\(\frac{2018}{2019}\)ta thấy \(\frac{2017}{2019}\)nhỏ hơn\(\frac{2018}{2019}\)

\(\Rightarrow\frac{2017}{2018}>\frac{2017}{2019}>\frac{2018}{2019}\)hay \(\frac{2017}{2018}\)>\(\frac{2018}{2019}\)

19 tháng 7 2018

câu b lm tương tự

16 tháng 5 2019

\(2018\times\left(\frac{1}{2}+\frac{1212}{2424}\right)=2018\times\left(\frac{1}{2}+\frac{12}{24}\right).\)

                                                  \(=2018\times\left(\frac{1}{2}+\frac{1}{2}\right)\)

                                                  \(=2018\times1=2018\)

16 tháng 5 2019

2018.(1/2+1212/2424)

=2018.(1/2+1/2)

=2018.2/2

=2018.1

=2018

Hk tốt

4 tháng 8 2018

Ta có:

\(\frac{2017.2019}{2018.2018}\)

\(=\frac{2017.\left(2018+1\right)}{\left(2017+1\right).2018}\)

\(=\frac{2017.2018+2017}{2017.2018+2018}\)

Vì \(2017.2018+2017< 2017.2018+2018\)tử nhỏ hơn mẫu )

\(\Rightarrow\frac{2017.2018+2017}{2017.2018+2018}< 1\)

Vậy \(\frac{2017.2019}{2018.2018}< 1\)

        ( Mk nghĩ vậy )

                          ~~~~~~~Hok tốt~~~~~~~

4 tháng 8 2018

\(\frac{2017.2019}{2018.2018}=\frac{2017.\left(2018+1\right)}{2018.\left(2017+1\right)}=\frac{2017.2018+2017}{2018.2017+2018}\)

\(2017< 2018\Rightarrow2017.2018+2017< 2018.2017+2018\Rightarrow\frac{2017.2018+2017}{2018.2017+2018}< 1\Rightarrow\frac{2017.2019}{2018.2018}< 1\)

30 tháng 3 2017

\(\frac{1}{2016}\)\(\frac{3}{2016}\)\(\frac{5}{2016}\)+..........+ \(\frac{2015}{2016}\)\(\frac{1+3+5+....+2015}{2016}\)

                                                                                         =\(\frac{1016064}{2016}\)\(504\)

30 tháng 3 2017

\(\frac{1}{2016}\)\(+\frac{3}{2016}\)\(+\frac{5}{2016}\)\(+...+\frac{2015}{2016}\)

\(=\frac{1+3+5+...+2015}{2016}\)

\(=\frac{1016064}{2016}\)

\(=504\)