Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tách phân số nhân với phân số phần nguyên nhân với phần nguyên
bạn tính từng ngoặc rồi dùng chiệt tiêu của phép nhân phân số nhé
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right).....\left(\frac{1}{1999}-1\right)=-\frac{1}{2}.\left(-\frac{2}{3}\right).\left(-\frac{3}{4}\right).....\left(-\frac{1998}{1999}\right)=-\frac{1}{1999}\)
a)
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{n+1}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{n}{n+1}\)
\(=\frac{1\cdot2\cdot3\cdot...\cdot n}{2\cdot3\cdot4\cdot...\cdot\left(n+1\right)}\)
\(=\frac{1}{n+1}\)
\(\frac{5.18-10.27+15.36}{10.36-20.54+30.72}\)
\(=\frac{5.18-10.27+15.36}{5.2.18.2-10.2.27.2+15.2.36.2}\)
\(=\frac{5.18-10.27+15.36}{5.8.2.2-10.27.2.2+15.36.2.2}\)
\(=\frac{1}{2.2-2.2+2.2}\)
\(=\frac{1}{2.2}=\frac{1}{4}\)
Theo đề ta có: \(\frac{\left(1+2+3+...+100\right)\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}\right)\left(6,3.12-21.3,6\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}\)
\(=\frac{\left(1+2+3...+100\right)\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).0}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}\)
= 0
C = 1/3 + -3/4 + 3/5 + 1/57 + -1/36 + 1/15 + -2/9
C = ( 1/3 + 1/57 ) + ( -3/4 + -1/36 ) + ( 3/5 + 1/15 ) + -2/9
C = ( 19/57 + 1/57 ) + ( -27/36 + -1/36 ) + ( 9/15 + 1/15 ) + -2/9
C = 20/57 + -28/36 + 10/15 + -2/9
C = 20/57 + -7/9 + 2/3 + -2/9
C = ( 20/57 + 2/3 ) + ( -7/9 + -2/9 )
C = 58/57 + -1
C = 1/57
D = 1/2 + -1/5 + -5/7 + 1/6 + -3/35 + 1/3 + 1/41
D = ( 1/2 + 1/3 + 1/6 ) + ( -1/5 + -5/7 +-3/35 ) + 1/41
D = ( 3/6 + 2/6 + 1/6 ) + ( -7/35 + -25/35 + -3/35 ) + 1/41
D = 1 + -1 + 1/41
D = 1/41
E = -1/2 + 3/5 + -1/9 + 1/127 + -7/18 + 4/35 + 2/7
E = ( -1/2 + -1/9 + -7/18 ) + ( 3/5 + 4/35 ) + 1/127 + 2/7
E = ( -9/18 + -2/18 + -7/18 ) + ( 21/35 + 4/35 ) + 1/127 + 2/7
E = -1 + 5/7 + 1/257 + 2/7
E = -1 + ( 5/7 + 2/7 ) + 1/127
E = -1 + 1 + 1/127
E = 1/127
\(1-\frac{1}{n^2}=\frac{n^2-1}{n^2}=\frac{\left(n-1\right)\left(n+1\right)}{n^2}\)
\(\frac{\left(1.3.2.4.3.5......\left(n-2\right)\left(n\right)\left(n-1\right)\left(n+1\right)\right)}{2.2.3.3.4.4...n.n}=\frac{\left(n+1\right)}{2.n}\)
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{1999}-1\right)\)
\(=\left(-\frac{1}{2}\right)\left(-\frac{2}{3}\right)\left(-\frac{3}{4}\right)...\left(-\frac{1998}{1999}\right)\)
\(=\frac{\left(-1\right)\left(-2\right)\left(-3\right)...\left(-1998\right)}{2\cdot3\cdot4\cdot...\cdot1999}\)
\(=\frac{1\cdot2\cdot3\cdot...\cdot1998}{2\cdot3\cdot4\cdot...\cdot1999}=\frac{1}{1999}\)