Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{2.4}+\frac{3}{4.6}+....+\frac{3}{98.100}\)
\(=\frac{3}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{98.100}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{98}-\frac{1}{100}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(=\frac{3}{2}.\frac{49}{100}=\frac{147}{200}\)
\(\frac{3}{2.4}+\frac{3}{4.6}+\frac{3}{6.8}+...+\frac{3}{98.100}\)
\(=\frac{3}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+....+\frac{2}{98.100}\right)\)
\(=\frac{3}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+....+\frac{1}{98}-\frac{1}{100}\right)\)
\(=\frac{3}{2}\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(=\frac{3}{2}.\frac{49}{100}=\frac{147}{200}\)
=\(\frac{6\left(1+8+27+64\right)}{12\left(1+16+54+128\right)}\)
=\(\frac{6.100}{12.199}\)
=\(\frac{50}{199}\)
Tk mình với nha mọi người!!!!!
\(\frac{1x2x3+2x4x6+3x6x9+4x8x12}{1x3x4+4x6x8+6x9x12+8x12x16}\)
\(\frac{6x\left(1+8+27+64\right)}{12x\left(1+16+54+128\right)}=\frac{6x100}{12x199}=\frac{50}{199}\)
\(E=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+....+\frac{1}{2016.2018}\)
\(E=\frac{4-2}{2.4}+\frac{6-4}{4.6}+\frac{8-6}{6.8}+...+\frac{2018-2016}{2016.2018}\)
\(2E=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2016}-\frac{1}{2018}\)
\(E=\left(\frac{1}{2}-\frac{1}{2018}\right).\frac{1}{2}\)
\(E=\frac{504}{1009}.\frac{1}{2}\)
\(E=\frac{252}{1009}\)
\(E=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2016}-\frac{1}{2018}\)
\(E=\frac{1}{2}-\frac{1}{2018}\)
\(E=\frac{1005}{2018}\)
Đặt \(D=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{98.100}\)
=>\(2D=\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{98.100}\)
=>\(2D=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{100}\)
=>\(2D=\frac{1}{2}-\frac{1}{100}\)
=>\(2D=\frac{49}{100}\)
=>\(D=\frac{49}{50}\)
\(\frac{2}{5.6.7}+\frac{2}{7.8.9}+...+\frac{2}{99.100.101}\)
\(=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{99.100}+\frac{1}{100.101}\)
\(=\frac{1}{5.6}-\frac{1}{100.101}\)
\(=\frac{1007}{30300}\)
\(\frac{2}{5.6.7}\)+ \(\frac{2}{7.8.9}\)+...+\(\frac{2}{99.100.101}\)
= \(\frac{1}{5.6}\)- \(\frac{1}{6.7}\)+ \(\frac{1}{7.8}\)- \(\frac{1}{8.9}\)+ ... + \(\frac{1}{99.100}\)- \(\frac{1}{100.101}\)
= \(\frac{1}{5.6}\)- \(\frac{1}{100.101}\)= \(\frac{1007}{30300}\)
^_^ ( Have a good day )
Ta có :
\(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{9.9}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\)
\(=1-\frac{1}{9}=\frac{8}{9}\Rightarrow A< \frac{8}{9}\)(1)
Lại có \(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{9.9}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9.10}=\frac{1}{2}-\frac{1}{10}=\frac{4}{10}=\frac{2}{5}\Rightarrow A>\frac{2}{5}\)(2)
Từ (1) (2) => \(\frac{2}{5}< A< \frac{8}{9}\left(\text{ĐPCM}\right)\)
Bài làm :
Ta có :
\(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{9.9}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(A>\frac{1}{2}-\frac{1}{10}\)
\(A>\frac{2}{5}\left(1\right)\)
Ta cũng có :
\( A=\frac{1}{2.2}+\frac{1}{3.3}+......+\frac{1}{9.9}< \frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{8.9}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-......+\frac{1}{8}-\frac{1}{9}\)
\(A< 1-\frac{1}{9}\)
\(A< \frac{8}{9}\left(2\right)\)
\(\text{Từ (1) và (2) }\Rightarrow\frac{2}{5}< A< \frac{8}{9}\)
=> Điều phải chứng minh
Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Bài làm:
Ta có: \(S=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{9.9}\)
\(>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+..+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)\(\Rightarrow\frac{2}{5}< S\)
Cái còn lại tự CM
số thập phân ghi làm sao
tớ làm được rồi