K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2015

 

A=1990.32-990/1990.31+1000

A=1990.(31+1)-990/1990.31+1000

A=1990.31+1990-990/1990.31+1000

A=1990.31+1000/1990.31+1000

A=1

8 tháng 3 2020

Trả lời:

\(a,\)\(A=\frac{1990.32-990}{1990.31+1000}\)

\(\Leftrightarrow A=\frac{\left(1000+990\right).32-990}{\left(1000+990\right).31+1000}\)

\(\Leftrightarrow A=\frac{1000.32+990.32-990}{1000.31+990.31+1000}\)

\(\Leftrightarrow A=\frac{1000.32+990.31}{1000.32+990.31}\)

\(\Leftrightarrow A=1\)

Vậy\(A=1\)

\(b,\)\(B=\frac{2008.2009+2000}{2009.2010-2018}\)

\(\Leftrightarrow B=\frac{2008.2009+2008-8}{2009.2010-2010-8}\)

\(\Leftrightarrow B=\frac{2008.\left(2009+1\right)-8}{(2009-1).2010-8}\)

\(\Leftrightarrow B=\frac{2008.2010-8}{2008.2010-8}\)

\(\Leftrightarrow B=1\)

Vậy\(B=1\)

Hok tốt!

Good girl

24 tháng 6 2017

a, \(\dfrac{2009}{2010}\)\(\dfrac{2010}{2011}\)

Ta có:

\(2009.2011=4040099\)

\(2010.2010=4040100\)

\(2009.2011< 2010.2010\)

nên \(\dfrac{2009}{2010}< \dfrac{2010}{2011}\)

b, \(\dfrac{2008}{2008.2009}\)\(\dfrac{2009}{2009.2010}\)

Ta có:

\(\dfrac{2008}{2008.2009}=\dfrac{1}{2009};\dfrac{2009}{2009.2010}=\dfrac{1}{2010}\)

\(\dfrac{1}{2009}>\dfrac{1}{2010}\) nên \(\dfrac{2008}{2008.2009}>\dfrac{2009}{2009.2010}\)

Chúc bạn học tốt!!!

24 tháng 6 2017

a)\(\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)

\(\dfrac{2009}{2010}< 1\)

\(\Leftrightarrow\dfrac{2009}{2010}< \dfrac{2009+1}{2010+1}\Leftrightarrow\dfrac{2009}{2010}< \dfrac{2010}{2011}\)

b)

\(\dfrac{2008}{2008.2009}=\dfrac{1}{2009}\)

\(\dfrac{2009}{2009.2010}=\dfrac{1}{2010}\)

\(\dfrac{1}{2009}>\dfrac{1}{2010}\Leftrightarrow\dfrac{2008}{2008.2009}>\dfrac{2009}{2009.2010}\)

d)

\(\dfrac{1}{3^{400}}=\dfrac{1}{\left(3^4\right)^{100}}=\dfrac{1}{81^{100}}\)

\(\dfrac{1}{4^{300}}=\dfrac{1}{\left(4^3\right)^{100}}=\dfrac{1}{64^{100}}\)

\(81^{100}>64^{100}\Leftrightarrow\dfrac{1}{81^{100}}< \dfrac{1}{64^{100}}\)

31 tháng 3 2018

Áp dụng tính chất tỉ lệ thức và tính chất dãy tỉ số bằng nhau:

\(ay^2=bx^2\Leftrightarrow\dfrac{x^2}{a}=\dfrac{y^2}{b}=\dfrac{x^2+y^2}{a+b}=\dfrac{1}{a+b}\)

\(\Rightarrow\left(\dfrac{x^2}{a}\right)^{1000}=\left(\dfrac{y^2}{b}\right)^{1000}=\dfrac{1}{\left(a+b\right)^{1000}}\)

\(\Rightarrow\dfrac{x^{2000}}{a^{1000}}+\dfrac{y^{2000}}{b^{1000}}=\dfrac{2}{\left(a+b\right)^{1000}}\)

28 tháng 6 2018

a, \(2^{x-1}+5.2^{x-2}=\frac{7}{32}\)

=>\(2^{x-1}+\frac{5}{2}.2^{x-1}=\frac{7}{32}\)

=>\(2^{x-1}\left(1+\frac{5}{2}\right)=\frac{7}{32}\)

=>\(2^{x-1}\cdot\frac{7}{2}=\frac{7}{32}\)

=>\(2^{x-1}=\frac{1}{16}=\frac{1}{2^4}=2^{-4}\)

=>x-1=-4

=>x=-5

b, |x - 4| + |x - 10| + |x + 101| + |x + 990| + |x + 1000| = |4-x|+|10-x|+|x+101|+|x+990|+|x+1000|

Ta có: \(\left|4-x\right|\ge4-x;\left|10-x\right|\ge10-x;\left|x+990\right|\ge x+990;\left|x+1000\right|\ge x+1000\)

\(\Rightarrow\left|4-x\right|+\left|10-x\right|+\left|x+990\right|+\left|x+1000\right|\ge4-x+10-x+x+990+x+1000\)

\(\Rightarrow\left|4-x\right|+\left|10-x\right|+\left|x+101\right|+\left|x+990\right|+\left|x+1000\right|\ge2004+\left|x+101\right|\)

\(\Rightarrow2005\ge2004+\left|x+101\right|\)

\(\Rightarrow\left|x+1\right|\le1\)

\(\Rightarrow-1\le x+101\le1\)

\(\Rightarrow-102\le x\le-100\)

Vì \(x\in Z\)

\(\Rightarrow x\in\left\{-102;-101;-100\right\}\)

29 tháng 6 2018

bài a nhầm 2 dòng cuối

=>x-1=-4

=>x=-3

14 tháng 10 2018

\(x^2+\left(y-\dfrac{1}{10}\right)^{2018}=0\\ \Leftrightarrow x^2+\left[\left(y-\dfrac{1}{10}\right)^{1009}\right]^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=0\\\left(y-\dfrac{1}{10}\right)^{1009}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)

13 tháng 7 2018

\(A=\)\(\left(1^3-1000\right).\left(2^3-1000\right)\)\(.....\left(2018^3-1000\right)\)

\(A=\left(1^3-1000\right).\left(2^3-1000\right)...\left(10^3-1000\right)...\left(2018^3-1000\right)\)

\(A=\left(1^3-1000\right).\left(2^3-1000\right)...0...\left(2018^3-1000\right)\)

\(A=0\)

        ~~~Hok tốt~~~