\((3^8×11+3^{10}+5):(3^8+2^3)\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2017

1:

a)10/20-15/20+16/20=-5/20+16/20

=11/20.

b)2/3+8/3:8/5=2/3+5/3

=7/3.

2:a)Ta có:

2x=1/4=3/4

2x=4/4=1

x=1:2

x=0,5

b)x:(2/12-1/12)=-3/8.

x:1/12=-3/8.

x=-3/8x1/12.

x=-1/32.

23 tháng 6 2018

Giải:

a) Biến đổi tử:

Đặt:

\(C=1+5+5^2+5^3+...+5^9\)

\(\Leftrightarrow5C=5+5^2+5^3+5^4...+5^{10}\)

\(\Leftrightarrow5C-C=5^{10}-1\)

\(\Leftrightarrow4C=5^{10}-1\)

\(\Leftrightarrow C=\dfrac{5^{10}-1}{4}\)

Tương tự ta có mẫu là:

\(\dfrac{5^9-1}{4}\)

Đặt vào A, được:

\(A=\dfrac{1+5+5^2+5^3+...+5^9}{1+5+5^2+5^3+...+5^8}\)

\(\Leftrightarrow A=\dfrac{\dfrac{5^{10}-1}{4}}{\dfrac{5^9-1}{4}}\)

\(\Leftrightarrow A=\dfrac{5^{10}-1}{5^9-1}\)

Vậy ...

b) Tương tự câu a, ta được:

\(B=\dfrac{\dfrac{3^{10}-1}{2}}{\dfrac{3^9-1}{2}}\)

\(\Leftrightarrow B=\dfrac{3^{10}-1}{3^9-1}\)

Vậy ...

16 tháng 7 2018

đề??? 

23 tháng 6 2018

Theo bài ra, ta có:

+) A = \(\dfrac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}\)

= \(\dfrac{1+5+5^2+...+5^8}{1+5+5^2+...+5^8}\)+ \(\dfrac{5^9}{1+5+5^2+...+5^8}\)

= 1 + \(\dfrac{1}{\dfrac{1+5+5^2+...+5^8}{5^9}}\)

+) B = \(\dfrac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}\)

= \(\dfrac{1+3+3^2+...+3^8}{1+3+3^2+...+3^8}\)+ \(\dfrac{3^9}{1+3+3^2+...+3^8}\)

= 1 + \(\dfrac{1}{\dfrac{1+3+3^2+...+3^8}{3^9}}\)

Nhận xét:

+) \(\dfrac{1+5+5^2+...+5^8}{5^9}\) = \(\dfrac{1}{5^9}\) + \(\dfrac{1}{5^8}\) + ... + \(\dfrac{1}{5^{ }}\)

+) \(\dfrac{1+3+3^2+...+3^8}{3^9}\) = \(\dfrac{1}{3^9}\) + \(\dfrac{1}{3^8}\) + ... + \(\dfrac{1}{3}\)

Có: \(\dfrac{1}{5^9}\) < \(\dfrac{1}{3^9}\) ; \(\dfrac{1}{5^8}\) < \(\dfrac{1}{3^8}\) ; ... ; \(\dfrac{1}{5^{ }}\) < \(\dfrac{1}{3}\)

\(\dfrac{1+5+5^2+...+5^8}{5^9}\) < \(\dfrac{1+3+3^2+...+3^8}{3^9}\)

\(\dfrac{1}{\dfrac{1+5+5^2+...+5^8}{5^9}}\) > \(\dfrac{1}{\dfrac{1+3+3^2+...+3^8}{3^9}}\)

⇒ A > B

Vậy A > B.

7 tháng 4 2019

\(A=21\frac{4}{11}-\left(1\frac{3}{5}+7\frac{4}{11}\right)\)

\(A=\frac{235}{11}-\left(\frac{8}{5}+\frac{81}{11}\right)\)

\(A=\left(\frac{235}{11}-\frac{81}{11}\right)+\frac{8}{5}\)

\(A=\frac{154}{11}+\frac{8}{5}\)

\(\Rightarrow A=\frac{78}{5}\)

7 tháng 4 2019

\(B=\left(7\frac{8}{9}+2\frac{3}{13}\right)-\left(4\frac{8}{9}-7\frac{10}{13}\right)\)

\(B=\left(\frac{71}{9}+\frac{29}{13}\right)-\left(\frac{44}{9}-\frac{101}{13}\right)\)

\(B=\left(\frac{71}{9}-\frac{44}{9}\right)+\left(\frac{29}{13}-\frac{101}{13}\right)\)

\(B=\frac{27}{9}+\frac{-72}{13}\)

\(B=3+\frac{-72}{13}\)

\(\Rightarrow B=\frac{-33}{13}\)

P/s: Hoq chắc :v

18 tháng 6 2018

\(M=\dfrac{8}{3}\cdot\dfrac{2}{5}\cdot\dfrac{3}{8}\cdot10\cdot\dfrac{19}{92}\\ =\dfrac{8\cdot2\cdot3\cdot10\cdot19}{3\cdot5\cdot8\cdot92}\\ =\dfrac{8\cdot2\cdot3\cdot2\cdot5\cdot19}{3\cdot5\cdot8\cdot2\cdot2\cdot23}\\ =\dfrac{19}{23}\)

\(N=\dfrac{5}{7}\cdot\dfrac{5}{11}+\dfrac{5}{7}\cdot\dfrac{2}{11}-\dfrac{5}{7}\cdot\dfrac{14}{11}\\ =\dfrac{5}{7}\cdot\left(\dfrac{5}{11}+\dfrac{2}{11}-\dfrac{14}{11}\right)\\ =\dfrac{5}{7}\cdot\left(-\dfrac{7}{11}\right)\\ =-\dfrac{5}{11}\)

\(Q=\left(\dfrac{1}{99}+\dfrac{12}{999}-\dfrac{123}{9999}\right)\cdot\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)\\ =\left(\dfrac{1}{99}+\dfrac{12}{999}-\dfrac{123}{9999}\right)\cdot\left(\dfrac{3}{6}-\dfrac{2}{6}-\dfrac{1}{6}\right)\\ =\left(\dfrac{1}{99}+\dfrac{12}{999}-\dfrac{123}{9999}\right)\cdot\left(\dfrac{1}{6}-\dfrac{1}{6}\right)\\ =\left(\dfrac{1}{99}+\dfrac{12}{999}-\dfrac{123}{9999}\right)\cdot0\\ =0\)

a) \(\left(\frac{-1}{6}+\frac{5}{-12}\right)+\frac{7}{12}=\left(\frac{-2}{12}+\frac{-5}{12}\right)+\frac{7}{12}=\left(\frac{-7}{12}\right)+\frac{7}{12}=0\)

b)\(\frac{7}{36}-\frac{8}{-9}+\frac{-2}{3}=\frac{7}{36}+\frac{32}{36}-\frac{24}{36}=\frac{15}{36}=\frac{5}{12}\)

c) \(\frac{3}{5}-\frac{2}{5}.\frac{10}{12}=\frac{3}{5}-\frac{2}{5}.\frac{5}{6}=\frac{3}{5}-\frac{1}{3}=\frac{9}{15}-\frac{5}{15}=\frac{4}{15}\)

d) \(\frac{2}{\left(-3\right)^2}+\frac{5}{-13}-\frac{-3}{4}=\frac{2}{9}-\frac{5}{13}+\frac{3}{4}=\frac{8}{36}-\frac{15}{36}+\frac{27}{36}=\frac{5}{9}\)