Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{75-\frac{6}{13}+\frac{3}{17}-\frac{3}{19}}{275-\frac{22}{13}+\frac{11}{17}-\frac{11}{19}}\)
\(=\frac{3.25-\frac{2}{13}+\frac{1}{17}-\frac{1}{19}}{11.25-\frac{2}{13}+\frac{1}{17}-\frac{1}{19}}\)
\(=\frac{3}{11}\)
Vậy: \(M=\frac{3}{11}\)
75-3(2/13+1/17-3/19) 75-3 72 3
-------------------------------------------------=------- =-------=----
275-11(2/13+1/17-1/19 275-11 264 11
A = \(\frac{75-\frac{6}{13}+\frac{3}{17}-\frac{3}{19}}{275-\frac{22}{13}+\frac{11}{17}-\frac{11}{19}}\)
A = \(\frac{3.\left(25-\frac{2}{13}+\frac{1}{17}-\frac{1}{19}\right)}{11.\left(25-\frac{2}{13}+\frac{1}{17}-\frac{1}{19}\right)}\)
A = \(\frac{3}{11}\)
a) 75 - 3.(2/13+1/17-1/19) 3.[25-(2/13+1/17-1/19)]
-------------------------------------- = ---------------------------------------------- = 3/11
275-11.(2/13+1/17-1/19) 11.[25-(2/13+1/17-1/19)]
a) \(\frac{75-\frac{6}{13}+\frac{3}{17}-\frac{3}{19}}{275-\frac{22}{13}+\frac{11}{17}-\frac{11}{19}}=\frac{75-3.\left(\frac{2}{13}+\frac{1}{17}-\frac{1}{19}\right)}{275-11.\left(\frac{2}{13}+\frac{1}{17}-\frac{1}{19}\right)}\)
\(=\frac{75-3}{275-11}\)
\(=\frac{72}{264}=\frac{3}{11}\)
b) \(\frac{2}{3.5}+\frac{7}{5.12}+\frac{9}{4.39}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{12}+\frac{3}{52}\)
\(=\frac{1}{3}-\frac{1}{12}+\frac{3}{52}\)
\(=\frac{1}{4}+\frac{3}{52}=\frac{4}{13}\)
( x - \(\sqrt{3}\) )\(^{2016}\) \(\ge\) 0 với mọi x . Kí hiệu là 1
(y\(^2\) - 3 )\(^{2018}\)\(\ge\) 0 với mọi y . Kí hiệu là 2
Từ 1 và 2 suy ra ( x - \(\sqrt{3}\) )\(^{2016}\) = 0 và (y\(^2\) - 3 )\(^{2018}\) = 0 . Kí hiệu là 3
Từ 3 suy ra x - \(\sqrt{3}\) = 0 suy ra x = \(\sqrt{3}\)
y\(^2\)- 3 = 0 suy ra y\(^2\) = 0 suy ra y =..........
2. Trên tử đặt 3 ra ngoài. Dưới mẫu đặt 11 ra ngoài rồi triệt tiêu.
3. 17^18 = (17^3)^6 = 4913^6
63^12 = (63^2)^6 = 3969 ^6
Vì 4913 > 3969 nên 4913^6 > 3969^6 hay 17^18>63^12
a) câu a sai đề em nhé, tử số phải là 6/ 13
tử số em đặt 3 ra ngoài, mẫu số em đặt 11 ra ngoài bên trong ngoặc là hai biểu thức giống nhau, đáp số 3/11
b) 17^18 = (17^3)^6 =4913^6
63^12 =(63^2)^6 =3969^6. giờ thì dễ rồi
c) Vì ( x - √3 )^ 2016 >= 0; ( y ^2 -3 ) ^ 2018> =0 nên ( x - √3 )^ 2016 + ( y ^2 -3 ) ^ 2018 = 0 khi ( x - √3 )^ 2016 =0 và
( y ^2 -3 ) ^ 2018 = 0, suy ra x = căn 3; y^2 =3 => x =căn 3; y = căn 3 hoặc y = - căn 3
Phần 1)Đầu tiên bạn nhân B với 1 phần 4 rồi tính đến đoạn gần cuối sẽ ra 1/3 - 1/35 rồi quy đòng rồi tính sẽ ra kêt quả cuối là 32/105 nha
Mình lười lắm nên chỉ help 1 phần thui nha sr
b) \(\frac{\frac{-6}{5}+\frac{6}{19}-\frac{6}{23}}{\frac{9}{5}-\frac{9}{19}+\frac{9}{23}}=\frac{\left(-6\right).\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}{9.\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}=\frac{-6}{9}=\frac{-2}{3}\)
d) \(\frac{\frac{2}{3}-\frac{2}{5}-\frac{2}{7}+\frac{2}{11}}{\frac{13}{3}-\frac{13}{5}-\frac{13}{7}+\frac{13}{11}}=\frac{2\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}+\frac{1}{11}\right)}{13\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}+\frac{1}{11}\right)}=\frac{2}{13}\)
Làm tiếp:
\(=\left(1+\frac{1}{2}+.....+\frac{1}{2017}\right)-\left(1+\frac{1}{2}+....+\frac{1}{1008}\right)\)
\(=\frac{1}{1009}+\frac{1}{1010}+.........+\frac{1}{2017}\)
\(\Rightarrow\frac{\frac{1}{1009}+....+\frac{1}{2017}}{1-\frac{1}{2}+.....+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}}=1\)
Bài 2:
Đặt \(A=\frac{1}{2^2}+.......+\frac{1}{2^{800}}\)
\(4A=1+\frac{1}{2^2}+.....+\frac{1}{2^{798}}\)
\(\Rightarrow4A-A=1-\frac{1}{2^{800}}\)
\(\Rightarrow3A=1-\frac{1}{2^{800}}< 1\Rightarrow A< \frac{1}{3}\)
Vậy \(\frac{1}{2^2}+\frac{1}{2^4}+........+\frac{1}{2^{800}}< \frac{1}{3}\)
Bài 1:Tính
a, Xét biểu thức \(\frac{\left(1+\frac{n}{1}\right)\left(1+\frac{n}{2}\right).........\left(1+\frac{n}{n+2}\right)}{\left(1+\frac{n+2}{1}\right)\left(1+\frac{n+2}{2}\right)..........\left(1+\frac{n+2}{n}\right)}\) với\(n\in N\)
Ta có:\(\frac{\left(1+\frac{n}{1}\right)\left(1+\frac{n}{2}\right).......\left(1+\frac{n}{n+2}\right)}{\left(1+\frac{n+2}{1}\right)\left(1+\frac{n+2}{2}\right)......\left(1+\frac{n+2}{n}\right)}\)
\(=\frac{\frac{n+1}{1}.\frac{n+2}{2}........\frac{2n+2}{n+2}}{\frac{n+3}{1}.\frac{n+4}{2}.........\frac{2n+2}{n}}\)
\(=\frac{\frac{\left(n+1\right)\left(n+2\right).......\left(2n+2\right)}{1.2.3.........\left(n+2\right)}}{\frac{\left(n+3\right)\left(n+4\right)........\left(2n+2\right)}{1.2.3.........n}}\)
\(=\frac{\left(n+1\right)\left(n+2\right).......\left(2n+2\right).1.2.3.......n}{\left(n+3\right)\left(n+4\right)........\left(2n+2\right).1.2.3......\left(n+2\right)}\)
\(=\frac{\left(n+1\right)\left(n+2\right)}{\left(n+1\right)\left(n+2\right)}=1\)
Áp dụng vào bài toán ta có đáp số là:1
b, \(\frac{\frac{-6}{5}+\frac{6}{19}-\frac{6}{23}}{\frac{9}{5}-\frac{9}{19}+\frac{9}{23}}=\frac{\left(-6\right).\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}{9.\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}=\frac{-6}{9}=-\frac{2}{3}\)
c,\(\frac{\frac{1}{6}-\frac{1}{39}+\frac{1}{51}}{\frac{1}{8}-\frac{1}{52}+\frac{1}{68}}=\frac{\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{13}+\frac{1}{17}\right)}{\frac{1}{4}.\left(\frac{1}{2}-\frac{1}{13}+\frac{1}{17}\right)}=\frac{\frac{1}{3}}{\frac{1}{4}}=12\)
d,\(\frac{\frac{2}{3}-\frac{2}{5}-\frac{2}{7}}{\frac{13}{3}-\frac{13}{5}-\frac{13}{7}}=\frac{2\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}\right)}{13\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}\right)}=\frac{2}{13}\)
e,Xét mẫu số ta có:
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+..........+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}\)
\(=1+\frac{1}{2}-2.\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-2.\frac{1}{4}+.....+\frac{1}{2015}+\frac{1}{2016}-2.\frac{1}{2016}+\frac{1}{2017}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{2017}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+.........+\frac{1}{2016}\right)\)