K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2017

1.M = 1992 . 19911991 - 1991 . 1992

M = 1992 . 1991 . 10001 - 1991 . 1992

M = 10001

3 tháng 7 2017

Mình đã kiểm tra: Sai rồi bạn nha

3 tháng 7 2017

đề sai r :v

3 tháng 7 2017

sai thế nào hả bạn?

22 tháng 11 2015

55555^11111<33333^33333

22 tháng 11 2015

5555511111=(5.11111)11111

3333333333=(3.11111)3.11111=(27.111113)11111

Vì (5.11111)11111<(27.111113)11111 nên 5555511111<3333333333

7 tháng 3 2017

Ta viết lại A như sau:

\(A=\frac{10^{1992}+1}{10^{1991}+1}\)

\(=\frac{10^{1991}X10+1}{10^{1991}+1}\)

\(=\frac{10+1}{1}\)

\(=\frac{11}{1}\)

\(=11\)

5 tháng 5 2015

A=10^1990+1/10^1991

A=10.(10^1990+1 / 10^1991+1)

10A=10^1991+10 / 10^1991+1

10A=10^1991+1 / 10^1991+1 +9/10^1991+1

10A=1 + 9/10^1991

B=10^1991+1 / 10^1992+1

B=10.(10^1991+1 / 10^1992+1)

10B=10^1992+10 / 10^1992+1

10B=10^1992+1 / 10^1992+1 + 9/10^1992+1

10B= 1+9/10^1992+1

Ta có    9/10^1991 > 9/10^1992

                 10A     >     10B

                     A    >       B

 

5 tháng 5 2015

Vì \(\frac{10^{1994}+1}{10^{1992}+1}\)<1

=> \(\frac{10^{1994}+1}{10^{1992}+1}\)<\(\frac{10^{1994}+1+9}{10^{1992}+1+9}\)

Ta có \(\frac{10^{1994}+1+9}{10^{1992}+1+9}\)=\(\frac{10\left(10^{1990}+1\right)}{10\left(10^{1991}+1\right)}\)=\(\frac{10^{1990}+1}{10^{1991}+2}\)

=>\(\frac{10^{1994}+1}{10^{1992}+1}\)<\(\frac{10^{1990}+1}{10^{1991}+2}\)

Vậy B < A

13 tháng 5 2016

Bắt đầu vs phân số có mẫu lớn hơn trước

Ta có: B=\(\frac{10^{1991}+1}{10^{1992}+1}\)<1

Có 1 công thức là \(\frac{a}{b}< 1\) => \(\frac{a}{b}< \frac{a+m}{b+m}\) nên

B<\(\frac{10^{1991}+1+9}{10^{1992}+1+9}\)(theo mình học thì phải cộng sao cho số đứng sau thành 1 số là số có mũ đằng trc)

B<\(\frac{10^{1991}+10}{10^{1992}+10}\)

B<\(\frac{10\left(10^{1990}+1\right)}{10\left(10^{1991}+1\right)}\) (lúc này nhớ đến tính chất phân phối của phép nhân)

Mà \(\frac{10^{1990}+1}{10^{1991}+1}\)(vế trong ngoặc)=A

=>A>B

 

24 tháng 4 2017

Mình làm cách 2 cho nhanh nhé !!

Ta có : \(\dfrac{10^{1991}+1}{10^{1992}+1}\)

\(\Rightarrow B=\dfrac{10^{1991}+1}{10^{1992}+1}< \dfrac{10^{1991}+1+9}{10^{1992}+1+9}\)

= \(\dfrac{10^{1991}+1}{10^{1992}+1}\)

=\(\dfrac{10\left(10^{1990}+1\right)}{10\left(10^{1991}+1\right)}\)

= \(\dfrac{10^{1990}+1}{10^{1991}+1}=A\)

Vậy B<A.