K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2020

\(-1\frac{1}{2}.\left(-1\frac{1}{3}\right).\left(-1\frac{1}{4}\right)...\left(-1\frac{1}{1999}\right)\)

\(-\frac{3}{2}.\left(\frac{-4}{3}\right).\left(-\frac{5}{4}\right)....\left(-\frac{2000}{1999}\right)=-\frac{3.4.5...2000}{2.3.4...1999}=-1000\)

21 tháng 8 2020

a) \(A=\left(-1\right)^{2n}.\left(-1\right)^n.\left(-1\right)^{n+1}=\left(-1\right)^{3n+1}\)

b) \(B=\left(10000-1^2\right)\left(10000-2^2\right).........\left(10000-1000^2\right)\)

\(=\left(10000-1^2\right)\left(10000-2^2\right)......\left(10000-100^2\right)....\left(10000-1000^2\right)\)

\(=\left(10000-1^2\right)\left(10000-2^2\right).....\left(10000-10000\right).....\left(10000-1000^2\right)=0\)

c) \(C=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)..........\left(\frac{1}{125}-\frac{1}{25^3}\right)\)

\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right).....\left(\frac{1}{125}-\frac{1}{5^3}\right)......\left(\frac{1}{125}-\frac{1}{25^3}\right)\)

\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)........\left(\frac{1}{125}-\frac{1}{125}\right).....\left(\frac{1}{125}-\frac{1}{25^3}\right)=0\)

d) \(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)........\left(1000-10^3\right)}\)

\(=1999^{\left(1000-1^3\right)\left(1000-2^3\right)........\left(1000-1000\right)}=1999^0=1\)

Bạn tách phân số nhân với phân số phần nguyên nhân với phần nguyên       

6 tháng 8 2020

\(\frac{5.18-10.27+15.36}{10.36-20.54+30.72}\)

\(=\frac{5.18-10.27+15.36}{5.2.18.2-10.2.27.2+15.2.36.2}\)

\(=\frac{5.18-10.27+15.36}{5.8.2.2-10.27.2.2+15.36.2.2}\)

\(=\frac{1}{2.2-2.2+2.2}\)

\(=\frac{1}{2.2}=\frac{1}{4}\)

7 tháng 8 2020

Giúp mik với

trước 5h nha

26 tháng 7 2017

\(\left(\frac{1}{2}-1\right)\cdot\left(\frac{1}{3}-1\right)\cdot \left(\frac{1}{4}-1\right)\cdot...\cdot\left(\frac{1}{1999}-1\right)\)

\(=\frac{-1}{2}\cdot\frac{-2}{3}\cdot\frac{-3}{4}\cdot...\cdot\frac{-1998}{1999}\)

\(=\frac{-1}{1999}\)

17 tháng 7 2018

đặt \(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{2003}-1\right)\)

\(-A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2003}\right)\)

\(-A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2002}{2003}\)

\(-A=\frac{1}{2003}\)

\(A=\frac{-1}{2003}\)

7 tháng 9 2019

bạn tính từng ngoặc rồi dùng chiệt tiêu của phép nhân phân số nhé

7 tháng 9 2019

\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right).....\left(\frac{1}{1999}-1\right)=-\frac{1}{2}.\left(-\frac{2}{3}\right).\left(-\frac{3}{4}\right).....\left(-\frac{1998}{1999}\right)=-\frac{1}{1999}\)

20 tháng 8 2018

câu b sai đề bạn ơi

20 tháng 8 2018

a)

\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{n+1}\right)\)

\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{n}{n+1}\)

\(=\frac{1\cdot2\cdot3\cdot...\cdot n}{2\cdot3\cdot4\cdot...\cdot\left(n+1\right)}\)

\(=\frac{1}{n+1}\)