\(\frac{3}{1}+\frac{3}{1+2}+\frac{3}{1+2+3}+\frac{3}{1+2+3+4}+....+\frac{3}{1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2017

\(A=\frac{3}{1}+\frac{3}{\frac{\left(2+1\right).2}{2}}+\frac{3}{\frac{\left(3+1\right).3}{2}}+....+\frac{3}{\frac{\left(100+1\right).100}{2}}\)

\(\Rightarrow A=\frac{3}{1}+\frac{6}{2.3}+\frac{6}{3.4}+...+\frac{6}{100.101}\)

\(\Rightarrow A=\frac{3}{1}+6.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{101}\right)\)

\(\Rightarrow A=\frac{3}{1}+6.\left(\frac{1}{2}-\frac{1}{101}\right)\)

\(\Rightarrow A=\frac{3}{1}+\frac{6.99}{202}=\frac{297}{101}+\frac{3}{1}=\frac{600}{101}\)

kết quả k bik có sai k

10 tháng 9 2017

Thua k câu hỏi trước của mình nhé

10 tháng 9 2017

k là k đánh lộn

12 tháng 5 2015

Đặt A = \(\frac{\frac{1}{2}}{1+2}+\frac{\frac{1}{2}}{1+2+3}+...+\frac{\frac{1}{2}}{1+2+3+....+100}\)

         = \(\frac{1}{2}\left(\frac{1}{2.3:2}+\frac{1}{3.4:2}+\frac{1}{4.5:2}+...+\frac{1}{100.101:2}\right)\)

         = \(\frac{1}{2}\left(\frac{2}{2.3}+\frac{2}{3.4}+....+\frac{2}{100.101}\right)\)

         = \(\frac{1}{2}.2\left(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{100.101}\right)\)

         = 1\(\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{100}-\frac{1}{101}\right)\)

         = \(\frac{1}{2}-\frac{1}{101}=\frac{101}{202}-\frac{2}{202}=\frac{99}{202}\)

3 tháng 6 2018

\(A=3+\frac{3}{1+2}+\frac{3}{1+2+3}+.....+\frac{3}{1+2+...+100}\)

     \(=3+\frac{3}{3}+\frac{3}{6}+...+\frac{3}{5050}\)

        \(=\frac{2}{2}.\left(3+\frac{3}{3}+\frac{3}{6}+...+\frac{3}{5050}\right)\)

          \(=\frac{6}{2}+\frac{6}{6}+\frac{6}{12}+...+\frac{6}{10100}\)

          \(=6.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\right)\)

            \(=6.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)

             \(=6.\left(1-\frac{1}{101}\right)\)

               \(=6.\frac{100}{101}=\frac{600}{101}\)

Vậy \(A=\frac{600}{101}\)

3 tháng 6 2018

\(A=3+\frac{3}{1+2}+\frac{3}{1+2+3}+...+\frac{3}{1+2+...+100}\)

\(A=\frac{3.2}{2}+\frac{3.2}{\left(1+2\right).2}+\frac{3.2}{\left(1+2+3\right).2}+...+\frac{3.2}{\left(1+2+...+100\right).2}\)

\(A=\frac{6}{2}+\frac{6}{6}+\frac{6}{12}+...+\frac{6}{10100}\)

\(A=\frac{6}{1.2}+\frac{6}{2.3}+\frac{6}{3.4}+...+\frac{6}{100.101}\)

\(A=6\cdot\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)

\(A=6\cdot\left(1-\frac{1}{101}\right)=6\cdot\frac{100}{101}=\frac{600}{101}\)

Vay A = ........ 

23 tháng 6 2017

1/3xD=1/(2x4)+1/(4x6)+...+1/(98x100)
2/3xD=2/(2x4)+2/(4x6)+...+1/(98x100)
2/3xD= 1/2-1/4+1/4-1/6+...+1/98-1/100
2/3xD=1/2-1/100
2/3xD=49/100
D=147/200

 

23 tháng 6 2017

A=1/2+1/3+1/6+1/12
A=(1/2+1/3+1/6)+1/12
A=1+1/12
A=13/12

14 tháng 5 2017

\(A=5+\frac{5}{1+2}+\frac{5}{1+2+3}+...+\frac{5}{1+2+3+...+100}\)
 

14 tháng 5 2017

A = \(5+\frac{5}{1+2}+\frac{5}{1+2+3}+...+\frac{5}{1+2+3+..+100}\)

\(=5x\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+100}\right)\)

\(=5x\left(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{5050}\right)\)

\(=2x5x\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{10100}\right)\)

\(=10x\left(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{100x101}\right)\)

\(=10x\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)

\(=10x\left(1-\frac{1}{101}\right)\)

\(=10x\frac{100}{101}\)

\(=\frac{1000}{101}\)