Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(3+\frac{1}{2}-\frac{2}{3}\right)-\left(2-\frac{2}{3}+\frac{5}{2}\right)-\left(5-\frac{5}{2}+\frac{4}{3}\right)\)
\(A=3+\frac{1}{2}-\frac{2}{3}-2+\frac{2}{3}-\frac{5}{2}-5+\frac{5}{2}-\frac{4}{3}\)
\(A=\left(3-2-5\right)+\left(\frac{2}{3}-\frac{2}{3}\right)+\left(\frac{5}{2}-\frac{5}{2}\right)+\frac{1}{2}-\frac{4}{3}\)
\(A=-4+\frac{1}{2}-1-\frac{1}{3}\)
\(A=-5+\frac{1}{2}-\frac{1}{3}\)
\(A=-5+\frac{1}{6}\)
\(A=-4\frac{5}{6}\)
\(8-12x+6x^2-x^3\)
\(=\left(2-x\right)^3\)
\(125x^3-75x^2+15x-1\)
\(=\left(5x-1\right)^3\)
\(x^2-xz-9y^2+3yz\)
\(=\left(x-3y\right)\left(x+3y\right)-z\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x+3y-z\right)\)
\(x^3-x^2-5x+125\)
\(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2-5x+25-x\right)\)
\(=\left(x+5\right)\left(x^2-6x+25\right)\)
\(x^3+2x^2-6x-27\)
\(=x^3+5x^2+9x-3x^2-15x-27\)
\(=x\left(x^2+5x+9\right)-3\left(x^2+5x+9\right)\)
\(=\left(x-3\right)\left(x^2+5x+9\right)\)
\(12x^3+4x^2-27x-9\)
\(=4x^2\left(3x+1\right)-9\left(3x+1\right)\)
\(=\left(3x+1\right)\left(4x^2-9\right)\)
\(=\left(3x+1\right)\left(2x-3\right)\left(2x+3\right)\)
\(4x^4+4x^3-x^2-x\)
\(=4x^3\left(x+1\right)-x\left(x+1\right)\)
\(=x\left(x+1\right)\left(4x^2-1\right)\)
\(=x\left(x+1\right)\left(2x-1\right)\left(2x+1\right)\)
a) \(2^3=2.2.2=8\)
\(2^4=2.8=16\)
\(2^5=2.16=32\)
\(2^6=2.32=64\)
\(2^7=2.64=128\)
\(2^8=2.128=256\)
\(2^9=2.256=512\)
\(2^{10}=2.512=1024\)
b) \(4^2=4.4=16\)
\(4^3=16.4=64\)
\(4^4=64.4=256\)
Còn lại tương tự
a) \(2^{3+4+5+6+7+8+9+10}=2^{52}\)
b) \(3^{14}\)\(=4782969\)
c) \(4^9\)\(=262144\)
d) \(5^9\)\(=1953125\)
e) \(6^9\)\(=10077696\)
K mk nha, mk nhanh nha
2\(^1\)=2
4\(^2\)= 16
8 = 8
10\(^3\)= 1000
3 = 3
5\(^2\)= 25
7\(^2\)= 49
9\(^2\)= 81
xin thank
học tốt
\(a)\) \(S=1+2+2^2+2^3+...+2^{2017}\)
\(2S=2+2^2+2^3+2^4+...+2^{2018}\)
\(2S-S=\left(2+2^2+2^3+2^4+...+2^{2018}\right)-\left(1+2+2^2+2^3+...+2^{2017}\right)\)
\(S=2^{2018}-1\)
\(b)\) \(S=3+3^2+3^3+...+3^{2017}\)
\(3S=3^2+3^3+3^4+...+3^{2018}\)
\(3S-S=\left(3^2+3^3+3^4+...+3^{2018}\right)-\left(3+3^2+3^3+...+3^{2017}\right)\)
\(2S=3^{2018}-3\)
\(S=\frac{3^{2018}-3}{2}\)
\(c)\) \(S=4+4^2+4^3+...+4^{2017}\)
\(4S=4^2+4^3+4^4+...+4^{2018}\)
\(4S-S=\left(4^2+4^3+4^4+...+4^{2018}\right)-\left(4+4^2+4^3+...+4^{2017}\right)\)
\(3S=4^{2018}-4\)
\(S=\frac{4^{2018}-4}{3}\)
\(d)\) \(S=5+5^2+5^3+...+5^{2017}\)
\(5S=5^2+5^3+5^4+...+5^{2018}\)
\(5S-S=\left(5^2+5^3+5^4+...+5^{2018}\right)-\left(5+5^2+5^3+...+5^{2017}\right)\)
\(4S=5^{2018}-5\)
\(S=\frac{5^{2018}-5}{2}\)
Chúc em học tốt ~
Ngoặc cuối cùng bằng 0 suy ra A=0
\(A=\left(2^2+2^3+2^4+2^5 \right).\left(3^2+3^3+3^4\right)\left(2^4-4^2\right)\)
\(=\left(2^2+2^3+2^4+2^5\right).\left(3^2+3^3+3^4\right).\left(16-16\right)\)
\(=0\)