Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1−3+5−7+...+2001−2003+2005S=1−3+5−7+...+2001−2003+2005
=(1−3)+(5−7)+...+(2001−2003)+2005=(1−3)+(5−7)+...+(2001−2003)+2005(Có 1002 cặp)
=(−2).1002+2005=(−2).1002+2005
=−2004+2005=−2004+2005
=1
a,
\(\left(25^6-15^6-10^6\right):5^6\\ =\left[\left(5\cdot5\right)^6-\left(3\cdot5\right)^6-\left(2\cdot5\right)^6\right]:5^6\\ =\left(5^6\cdot5^6-3^6\cdot5^6-2^6\cdot5^6\right):5^6\\ =5^6\left(5^6-3^6-2^6\right):5^6\\ =5^6-3^6-2^6\\ =15625-729-64\\ =14896-64\\ =14832\)
b,
\(1+2+2^2+...+2^{100}\\ =1\cdot\left(1+2+2^2+...+2^{100}\right)\\ =\left(2-1\right)\left(1+2+2^2+...+2^{100}\right)=\left(2-1\right)\cdot1+\left(2-1\right)\cdot2+\left(2-1\right)\cdot2^2+...+\left(2-1\right)\cdot2^{100}\\ =2-1+2^2-2+2^3-2^2+...+2^{101}-2^{100}\\ =2^{101}-1\)
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}< 2\left(đpcm\right)\)
bài 1 mifk viết sai nha.
bài 1: cho A=1+3+3\(^2\)+3\(^3\)+...+3\(^{10}\).Tìm số tự nhiên n biết 2 x A + 1 = 3\(^n\)
B1:
\(A=1+3+3^2+3^3+...+3^{10}\\ 3A=3+3^2+3^3+3^4+...+3^{11}\\ 3A-A=3^{11}-1\\ \Rightarrow A=\frac{3^{11}-1}{2}\)
mấy câu khác tương tự nha
\(a)\) Ta có :
\(\frac{1}{100}A=\frac{100^{2009}+1}{100^{2009}+100}=\frac{100^{2009}+100}{100^{2009}+100}-\frac{99}{100^{2009}+100}=1-\frac{99}{100^{2009}+100}\)
\(\frac{1}{100}B=\frac{100^{2010}+1}{100^{2010}+100}=\frac{100^{2010}+100}{100^{2010}+100}-\frac{99}{100^{2010}+100}=1-\frac{99}{100^{2010}+100}\)
Vì \(\frac{99}{100^{2009}+100}>\frac{99}{100^{2010}+100}\) nên \(1-\frac{99}{100^{2009}+100}< 1-\frac{99}{100^{2010}+100}\)
Do đó :
\(\frac{1}{100}A< \frac{1}{100}B\)\(\Rightarrow\)\(A< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
S = 101 + (-102) + 103 + (-104) + ... + 2017 + (-2018)
Khi số âm là số nguyên, ta có số số hạng là:
(2018 - 101) : 1 + 1 = 1918 (số hạng)
S = [101 + (-102)] + [103 + (-104)] + ... + [2017 + (-2018)]
S = (- 1) + (-1) + ... + (-1)
Có số số hạng là:
1918 : 2 = 959 (số hạng)
S = (-1) \(\times\) 959
S = - 959
P=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)
=0+0+...+0
=0
a) 1 + 4 + 7 + ... + 100
Ta có : 1 + 4 + 7 + ... + 100 ( có 34 số hạng )
= (100 + 1) . 34 : 2 = 1717
b) 2 + 6 + 10 + ... + 102
Ta có : 2 + 6 + 10 + ... + 102 ( có 26 số hạng )
= (102 + 2) . 26 : 2 = 1352
c) 2 + 22 + 23 + ... + 2100
Ta có : S = 2 + 22 + 23 + ... + 2100
2S = 2.(2 + 22 + 23 + ... + 2100)
2S = 22 + 23 + ... + 2100 + 2101
2S - S = (22 + 23 + ... + 2100 + 2101) - (2 + 22 + 23 + ... + 2100)
S = 2101 - 2
a) \(1+4+7+...+100\)
Số số hạng : (100-1) : 3 + 1= 34 (Số)
Tổng : \(\frac{34\left(100+1\right)}{2}=1717\)
b) Số số hạng : (102 - 2 ) : 4 + 1 = 26(Số)
Tổng : \(\frac{26\cdot\left(102+2\right)}{2}=1352\)
c) Đặt \(A=2+2^2+2^3+...+2^{100}\)
\(2A=2^2+2^3+2^4+...+2^{101}\)
\(2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2+2^2+2^3+...+2^{100}\right)\)
\(A=2^{101}-2\)