K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2022

a) \(A=2^{2010}-2^{2009}-2^{2008}-...-2-1\)

\(A=2^{2010}\left(2^{2009}+2^{2008}+...+2+1\right)\)

Đặt \(\text{A = 1 + 2 + . . . + 2^{2008} + 2^{2009}}\)

\(\text{⇒ 2 A = 2 + 2 2 + . . + 2^{2010}}\)

⇒ \(A=2^{2010}-1\)

⇒ \(A=2^{2010}-\left(2^{2010}-1\right)\)

⇒ \(A=1\)

7 tháng 4 2022

b) \(B=2072\)

c) \(\dfrac{4949}{19800}\)

Xin lỗi mình không có nhiều thời gian để giải thích trên đây á nên tạm gửi ảnh mình tạo nhé . Học tốt !

undefined

a) (1/7.x-2/7).(-1/5.x-2/5)=0

=> 1/7.x-2/7=0hoặc-1/5.x-2/5=0

*1/7.x-2/7=0

1/7.x=0+2/7

1/7.x=2/7

x=2/7:1/7

x=2

b)1/6.x+1/10.x-4/5.x+1=0

(1/6+1/10-4/5).x+1=0

(1/6+1/10-4/5).x=0-1

(1/6+1/10-4/5).x=-1

(-8/15).x=-1

x=-1:(-8/15) =15/8

12 tháng 3 2017

banhA = \(\dfrac{17}{15}.\dfrac{-31}{125}.\dfrac{1}{2}.\dfrac{10}{17}.\dfrac{-1}{8}\)

= \(\dfrac{17.\left(-31\right).1.10.\left(-1\right)}{15.125.2.17.8}\)

= \(\dfrac{17.\left[\left(-31\right).\left(-1\right)\right].1.2.5}{5.3.125.17.4.2}\)

= \(\dfrac{31.1}{3.125.4}\)

= \(\dfrac{31}{1500}\)

banhB = \(\left(\dfrac{11}{4}.\dfrac{-5}{9}-\dfrac{4}{9}.\dfrac{11}{4}\right).\dfrac{8}{33}\)

= \(\left[\dfrac{11}{4}.\left(\dfrac{-5}{9}-\dfrac{4}{9}\right)\right].\dfrac{8}{33}\)

= \(\left(\dfrac{11}{4}.\dfrac{-9}{9}\right).\dfrac{8}{33}\)

= \(\left[\dfrac{11}{4}.\left(-1\right)\right].\dfrac{4.2}{\left(-11\right).\left(-3\right)}\)

= \(\dfrac{-11}{4}.\dfrac{4.2}{\left(-11\right).\left(-3\right)}\)

= \(\dfrac{\left(-11\right).4.2}{4.\left(-11\right)\left(-3\right)}\)

= \(\dfrac{2}{-3}\)

Ok nhá!

28 tháng 7 2017

a) Xét:

\(a>b\)

\(\Rightarrow\dfrac{a}{b}>1\Rightarrow\dfrac{a+m}{b+m}>1\Rightarrow\dfrac{a}{b}>\dfrac{a+m}{a+m}\)

\(a< b\)

\(\Rightarrow\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\Rightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\)

\(a=b\)

\(\Rightarrow\dfrac{a}{b}=1\Rightarrow\dfrac{a+m}{b+m}=1\Rightarrow\dfrac{a}{b}=\dfrac{a+m}{b+m}=1\)

Mk chỉ áp dụng tính 1 câu,câu sau làm tương tự

b)

Ta có:

\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)

\(B=\dfrac{10^{1993}+1}{10^{1992}+1}< 1\)

\(B< \dfrac{10^{1993}+1+9}{10^{1992}+1+9}\Rightarrow B< \dfrac{10^{1993}+10}{10^{1992}+10}\Rightarrow B< \dfrac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}\Rightarrow B< \dfrac{10^{1992}+1}{10^{1991}+1}=A\)

\(B< A\)

@@ ~ học tốt ~

23 tháng 7 2017

Các bạn không cần trả lời câu hỏi trên của mik vì mik đã hiểu rồi nha . Cho nên đừng trả lời ! OKleuleu

23 tháng 7 2017

Mình khuyen bạn phải suy nghĩ kĩ bài trước khi đăng lên nhé!!hum

27 tháng 2 2019

1 )Ta có

\(M=\left(\dfrac{1}{2^2}-1\right)\cdot\left(\dfrac{1}{3^2}-1\right)\cdot\left(\dfrac{1}{4^2}-1\right)...\left(\dfrac{1}{100^2}-1\right)\)

\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right).....\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)

\(=\dfrac{-1}{2}\cdot\dfrac{3}{2}\cdot\dfrac{-2}{3}\cdot\dfrac{4}{3}\cdot\dfrac{-3}{4}\cdot\dfrac{5}{4}\cdot\cdot\cdot\cdot\dfrac{-99}{100}\cdot\dfrac{101}{100}\)

\(=\dfrac{-1\cdot\left(-2\right)\cdot\left(-3\right)\cdot3\cdot\left(-4\right)\cdot4\cdot\left(-5\right)\cdot5....\cdot\left(-100\right)\cdot100\cdot101}{2^2\cdot3^2\cdot4^2....\cdot100^2}\)

\(=-\dfrac{101}{200}< \dfrac{1}{2}\)

2 ) Số phân số của biểu thức B là 180 phân số

Ta có

\(\dfrac{1}{20}>\dfrac{1}{200};\dfrac{1}{21}>\dfrac{1}{200};\dfrac{1}{22}>\dfrac{1}{200};....;\dfrac{1}{199}>\dfrac{1}{200}\)

\(\Rightarrow B=\dfrac{1}{20}+\dfrac{1}{21}+...+\dfrac{1}{200}>\dfrac{1}{200}\cdot180=\dfrac{9}{10}\)

8 tháng 5 2017

\(S=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+...+\dfrac{2}{2009.2010.2011}\)

\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{2009.2010}-\dfrac{1}{2010.2011}\)

\(=\dfrac{1}{1.2}-\dfrac{1}{2010.2011}\)

\(=\dfrac{1}{2}-\dfrac{1}{4042110}< \dfrac{1}{2}\)

\(\Rightarrow\) \(S< P\)

Vậy \(S< P\)

8 tháng 5 2017

Cảm ơn nhá haha

29 tháng 3 2017

\(A=\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot...\cdot\dfrac{899}{900}\)

\(A=\dfrac{1\cdot3}{2\cdot2}\cdot\dfrac{2\cdot4}{3\cdot3}\cdot\dfrac{3\cdot5}{4\cdot4}\cdot...\cdot\dfrac{29\cdot31}{30\cdot30}\)

\(A=\dfrac{1\cdot\left(2\cdot3\cdot4\cdot5\cdot...\cdot29\right)^2\cdot30\cdot31}{\left(2\cdot3\cdot4\cdot...\cdot30\right)^2}\)

\(A=\dfrac{1\cdot\left(2\cdot3\cdot4\cdot5\cdot...\cdot29\right)^2\cdot30\cdot31}{\left(2\cdot3\cdot4\cdot5\cdot...\cdot29\right)^2\cdot30\cdot30}\)

\(A=\dfrac{1\cdot31}{30}=\dfrac{31}{30}\)

29 tháng 3 2017

Ta có : \(\dfrac{1}{101}>\dfrac{1}{300}\)

...

\(\dfrac{1}{299}>\dfrac{1}{300}\)

Do đó :

\(\dfrac{1}{101}+\dfrac{1}{102}+..+\dfrac{1}{300}>\dfrac{1}{300}+\dfrac{1}{300}..+\dfrac{1}{300}\)

\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+..+\dfrac{1}{300}>\dfrac{200}{300}=\dfrac{2}{3}\)

Vậy...

6 tháng 4 2017

\(A=15.\left(\dfrac{3}{5}-\dfrac{2}{3}\right)+1\\ A=15.\left(\dfrac{9}{15}-\dfrac{10}{15}\right)+1\\ A=15.\dfrac{-1}{15}+1\\ A=-1+1\\ A=0\)

6 tháng 4 2017

\(C=\dfrac{-5}{7}.\dfrac{2}{11}+\dfrac{-5}{7}.\dfrac{9}{11}+1\dfrac{5}{7}\\ C=\dfrac{-5}{7}.\dfrac{2}{11}+\dfrac{-5}{9}.\dfrac{9}{11}+\dfrac{12}{7}\\ C=\dfrac{-5}{7}.\left(\dfrac{2}{11}+\dfrac{9}{11}\right)+\dfrac{12}{7}\\ C=\dfrac{-5}{7}.1+\dfrac{12}{7}\\ C=\dfrac{-5}{7}+\dfrac{12}{7}\\ C=1\)