K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2015

a) (4x2 – 9y2) : (2x – 3y);

=(2x-3y)(2x+3y):(2x-3y)

=2x+3y                    

b) (27x3 – 1) : (3x – 1);

=(3x-1)(9x2+3x+1):(3x-1)

=9x2+3x+1

 

c) (8x3 + 1) : (4x2 – 2x + 1);

=(2x+1)(4x2-2x+1):(4x2-2x+1)

=2x+1                 

d) (x2 – 3x + xy -3y) : (x + y)

=[x.(x-3)+y.(x-3)]:(x+y)

=(x-3)(x+y):(x+y)

=x-3

 

6 tháng 8 2015

a) ( 4x^2 - 9y^2) : ( 2x-  3y) = ( 2x - 3y)(2x + 3y) : (2x-  3y) = 2x + 3y

b) (27x^3 - 1 ) : (3x-  1) = ( 3x - 1 )(9x^2 + 3x + 1 ) : ( 3x - 1 ) = 9x^2 + 3x+ 1 

c) ( 9x^3 + 1 ) : (4x^2 - 2x + 1 ) = ( 2x + 1 )(4x^2 - 2x + 1 ) : (4x^2 - 2x + 1 ) = 2x+  1 

d) ( x^2 - 3x + x  y - 3y ) : ( x+ y)

= [ x(x- 3 ) + y  ( x - 3 ) ] : ( x+ y)

= ( x+ y)(x- 3 ) : ( x+ y)

=x - 3 

29 tháng 10 2017

a)  2x + 3y

b)  2x + 1

c)  9x2 + 3x +1

d)  x - 3

Ở mỗi phần bạn phân tích đa thức bị chia thành nhân tử xuất hiện nhân tử chung là đa thức chia. Ta có đc kq như trên nha

21 tháng 7 2016

a ) \(\left(4x^2-9y^2\right):\left(2x-3y\right)\)

\(=\left(2x-3y\right)\left(2x+3y\right);\left(2x-3y\right)\)

\(=2x+3y\)

b ) \(\left(27x^3-1\right):\left(3x-1\right)\)

\(=\left(3x-1\right)\left(9x^2+3x+1\right):\left(3x-1\right)\)

\(=9x^2+3x+1\)

 

21 tháng 7 2016

a) (4x2 – 9y2) : (2x – 3y);

=(2x-3y)(2x+3y):(2x-3y)

=2x+3y                    

b) (27x3 – 1) : (3x – 1);

=(3x-1)(9x2+3x+1):(3x-1)

=9x2+3x+1

 

c) (8x3 + 1) : (4x2 – 2x + 1);

=(2x+1)(4x2-2x+1):(4x2-2x+1)

=2x+1                 

d) (x2 – 3x + xy -3y) : (x + y)

=[x.(x-3)+y.(x-3)]:(x+y)

=(x-3)(x+y):(x+y)

=x-3

28 tháng 6 2016

a) (4x2 – 9y2) : (2x – 3y) = [(2x)2 – (3y)2] : (2x – 3y) = 2x + 3y;        

b) (27x3 – 1) : (3x – 1) = [(3x)3 – 1] : (3x – 1) = (3x)2 + 3x + 1 = 9x2 + 3x + 1

c) (8x3 + 1) : (4x2 – 2x + 1) = [(2x)3 + 1] : (4x2 – 2x + 1)

= (2x + 1)[(2x)2 – 2x + 1] : (4x2 – 2x + 1)

= (2x + 1)(4x2 – 2x + 1) : (4x2 – 2x + 1)  = 2x + 1                    

d) (x2 – 3x + xy -3y) : (x + y)

= [(x2 + xy) – (3x + 3y)] : (x + y)

= [x(x + y) – 3(x + y)] : (x + y)

= (x + y)(x – 3) : (x + y)

= x – 3.

20 tháng 12 2017

a) (4x2−9y2):(2x−3y)=[(2x)2−(3y)2]:(2x−3y)(4x2−9y2):(2x−3y)=[(2x)2−(3y)2]:(2x−3y)

=(2x−3y).(2x+3y):(2x−3y)=2x+3y=(2x−3y).(2x+3y):(2x−3y)=2x+3y;

b) (27x3−1):(3x−1)=[(3x)3−13]:(3x−1)(27x3−1):(3x−1)=[(3x)3−13]:(3x−1)

=(3x−1).[(3x)2+3x+1]:(3x−1)=9x2+3x+1=(3x−1).[(3x)2+3x+1]:(3x−1)=9x2+3x+1

c) (8x3+1):(4x2−2x+1)=[(2x)3+13]:(4x2−2x+1)(8x3+1):(4x2−2x+1)=[(2x)3+13]:(4x2−2x+1)

=(2x+1)[(2x)2−2x+1]:(4x2−2x+1)=(2x+1)[(2x)2−2x+1]:(4x2−2x+1)

=(2x+1)(4x2−2x+1):(4x2−2x+1)=2x+1=(2x+1)(4x2−2x+1):(4x2−2x+1)=2x+1

d) (x2−3x+xy−3y):(x+y)(x2−3x+xy−3y):(x+y)

=[(x2+xy)−(3x+3y)]:(x+y)=[x(x+y)−3(x+y)]:(x+y)=(x+y)(x−3):(x+y)=x−3

23 tháng 7 2017

giải

A=(3x-5)(2x+11)-(2x+3)(3x+7)

=6x^2+33x-10x-55-(6x^2+14x+9x+21)

=6x^2+33x-10x-55-6x^2-14x-9x-21

= -76

vậy biểu thức không phụ thuộc vào biến x,y

23 tháng 7 2017

B=(2x+3)(4x^2-6x+9)-2(4x^3-1)

=8x^3-12x^2+18x+12x^2-18x+27-8x^3+2

=29

vậy biểu thức không phụ thuộc vào biến x

21 tháng 10 2019

ta có:

a) (x2 - 3x + xy - 3y) : (x + y)

= [x(x - 3) + y(x - 3)] : (x + y)

= (x + y)(x - 3) : (x + y)

= x - 3

b) (x2 - y2 + 6x + 9) : (x + y + 3)

= [(x2 + 6x + 9) - y2] : (x + y + 3)

= [(x + 3)2 - y2] : (x + y + 3)

= (x + y + 3)(x - y + 3) : (x + y + 3)

= x - y + 3

25 tháng 5 2017

a) 2x2.(5x3-4x2y-7xy +1) =10x5-8x4y-14x3y+2x2 b) (5x -2y)(x2 -xy +1) =5x3-5x2y+5x-2x2y+2xy2-2y =5x3-7x2y+2xy2+5x-2y c) (\(\dfrac{1}{2}\)x -1)(2x -3) =x2-\(\dfrac{3}{2}\)x-2x+3 =x2-\(\dfrac{7}{2}\)x+3 d) (x +3y)2 =x2+6xy+9y2 e) (3x -2y)2 =9x2-12xy+4y2 g) (\(\dfrac{1}{4}\)x - 3y)(\(\dfrac{1}{4}\)x +3y) =\(\dfrac{1}{16}\)x2-9y2 f) (2x +3)3 =8x3+36x2+54x+27 h) (3 -2y)3 =27-54y+36y2-8y3