Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\frac{7-1}{1.3.7}+\frac{9-3}{3.7.9}+\frac{13-7}{7.9.13}+\frac{15-9}{9.13.15}\)\(+\frac{19-13}{13.15.19}\)
\(=\frac{1}{1.3}-\frac{1}{3.7}+\frac{1}{3.7}-\frac{1}{7.9}+\frac{1}{7.9}-\frac{1}{9.13}+\frac{1}{9.13}-\frac{1}{13.15}+\frac{1}{13.15}-\frac{1}{15.19}\)
\(=\frac{1}{1.3}-\frac{1}{15.19}=\frac{95}{285}-\frac{1}{285}=\frac{94}{285}\)
\(b,=\frac{1}{6}.\left(\frac{6}{1.3.7}+\frac{6}{3.7.9}+\frac{6}{7.9.13}+\frac{6}{9.13.15}+\frac{6}{13.15.19}\right)\)
làm giống như trên
\(c,=\frac{1}{8}.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\right)\)
\(=\frac{1}{16}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{48.49.50}\right)\)
\(=\frac{1}{16}.\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{50-48}{48.49.50}\right)\)
\(=\frac{1}{16}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)\)
\(=\frac{1}{16}.\left(\frac{1}{2}-\frac{1}{2450}\right)=\frac{1}{16}.\left(\frac{1225}{2450}-\frac{1}{2450}\right)=\frac{153}{4900}\)
\(d,=\frac{5}{7}.\left(\frac{7}{1.5.8}+\frac{7}{5.8.12}+\frac{7}{8.12.15}+...+\frac{7}{33.36.40}\right)\)
\(=\frac{5}{7}.\left(\frac{8-1}{1.5.8}+\frac{12-5}{5.8.12}+\frac{15-8}{8.12.15}+...+\frac{40-33}{33.36.40}\right)\)
\(=\frac{5}{7}.\left(\frac{1}{1.5}-\frac{1}{5.8}+\frac{1}{5.8}-\frac{1}{8.12}+\frac{1}{8.12}-\frac{1}{12.15}+...+\frac{1}{33.36}-\frac{1}{36.40}\right)\)
\(=\frac{5}{7}.\left(\frac{1}{5}-\frac{1}{1440}\right)=\frac{5}{7}.\left(\frac{288}{1440}-\frac{1}{1440}\right)=\frac{41}{288}\)
P/S: . là nhân nha
1+1+2+2+3+3+4+4+5+5+6+6+7+7+8+9+8+9+10+12+13+14+15+16+17+18+19+20+30+1000000=10000274
a \(\dfrac{5}{12}\times\dfrac{4}{9}\) + \(\dfrac{4}{9}\times\dfrac{7}{12}\)
= \(\dfrac{4}{9}\times\left(\dfrac{5}{12}+\dfrac{7}{12}\right)\)
= \(\dfrac{4}{9}\times\dfrac{12}{12}\)
= \(\dfrac{4}{9}\)
b(\(\dfrac{13}{21}\times\dfrac{7}{8}-\dfrac{12}{21}\times\dfrac{7}{8}\)) x 12
(\(\dfrac{7}{8}\times\left(\dfrac{13}{21}-\dfrac{12}{21}\right)\))x 12
\(\dfrac{7}{8}\times\dfrac{1}{21}\) x 12
\(\dfrac{139}{14}\)
\(\dfrac{7}{11}+\dfrac{3}{4}+\dfrac{4}{11}+\dfrac{8}{17}+\dfrac{1}{4}+\dfrac{18}{34}\)
=\(\left(\dfrac{7}{11}+\dfrac{4}{11}\right)+\left(\dfrac{3}{4}+\dfrac{1}{4}\right)\) + \(\dfrac{18}{34}\)
=1 + 1 + \(\dfrac{18}{34}\)
=\(\dfrac{34}{17}\)
a) = 17/19 - 17/19 + 27/35 + 35/35 = 0 + 62/35
b) = 1/3 x 4/5 + 1/3 x6/5 + 1/3 x 2 = 1/3(4/5 + 6/5 + 2) = 1/3 x 4 = = 4/3
c) 4/7 x 2/9 + 4/7 x 7/9 + 2/3 = 4/7 x (2/9 + 7/9) + 2/3 = 4/7 x 1 + 2/3 = 26/21
A) 17/19 - 17/19 + 27/35 + 35/35 = 0 + 62/35
B) 1/3 x 4/5 + 1/3 x 6/5 + 1/3 x 2 = 1/3 x(4/5 + 6/5 x 2 ) = 1/3 x 4 = 4/3
c) TƯƠNG TỰ CÂU A VÀ B
* HOKTOT*
NHA
\(\frac{15-\frac{15}{7}-\frac{15}{12}}{3-\frac{3}{7}-\frac{3}{12}}\)
= \(\frac{15.\left(1-\frac{1}{7}-\frac{1}{12}\right)}{3.\left(1-\frac{1}{7}-\frac{1}{12}\right)}\)
= \(\frac{15}{3}\)
= 5
a.1+3+5+7+9+11+13+15+17+19
muốn tính tổng của dãy ta lấy tổng số đầu và cuối nhân số các số hạng rồi chia 2.
tổng của dãy:(19+1)x10:2=100
ronaldo ở bồ đào nha
\(=\left(\frac{8}{15}-\frac{7}{15}\right)+\left(\frac{5}{12}-\frac{1}{12}\right)\)
\(=\frac{1}{15}+\frac{1}{3}\)
\(=\frac{6}{15}\)