Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{1}{3}+\frac{1}{9}+.......+\frac{1}{59049}\)
\(3A=3.\left(\frac{1}{3}+\frac{1}{9}+......+\frac{1}{59049}\right)\)
\(3A=1+\frac{1}{3}+........+\frac{1}{19683}\)
\(3A-A=\left(1+\frac{1}{3}+......+\frac{1}{19683}\right)-\left(\frac{1}{3}+\frac{1}{9}+........+\frac{1}{59049}\right)\)
\(2A=1-\frac{1}{59049}\)
\(2A=\frac{59048}{59049}\)
\(A=\frac{59048}{59049}:2\)
\(A=\frac{59048}{118098}\)
\(\frac{3}{2}+\frac{3}{8}+\frac{3}{32}+\frac{3}{128}+\frac{3}{512}\)
=\(\frac{3}{1.2}+\frac{3}{2.4}+\frac{3}{4.8}+\frac{3}{8.16}+\frac{3}{16.32}\)
=\(\frac{3}{1}-\frac{3}{2}+\frac{3}{2}-\frac{3}{4}+\frac{3}{4}-\frac{3}{8}+\frac{3}{8}-\frac{3}{16}+\frac{3}{16}-\frac{3}{36}\)
=\(\frac{3}{1}-\frac{3}{36}\)=\(\frac{35}{12}\)
Đặt A = \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
3A = \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
3A - A = (\(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)) - (\(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\))
2A = 1 - \(\frac{1}{729}\) = \(\frac{728}{729}\)
A = \(\frac{728}{729}:2=\frac{364}{729}\)
\(\text{Đặt : }A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(\Rightarrow3A-A=1-\frac{1}{729}\)
\(\Rightarrow2A=\frac{728}{729}\)
\(\Rightarrow A=\frac{728}{729}:2=\frac{364}{729}\)
Đặt \(D=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+\frac{1}{2187}\)
\(\Leftrightarrow D=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}+\frac{1}{3^6}+\frac{1}{3^7}\)
\(\Leftrightarrow3D=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}+\frac{1}{3^6}\)
\(\Leftrightarrow3D-D=2D=1-\frac{1}{3^6}\)
\(\Leftrightarrow D=\left(1-\frac{1}{3^6}\right)\div2\)
a, Gọi biểu thức đó là A
Ta có :
A = \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
A x 3 = \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}-\frac{1}{729}\)
A x 3 = \(1+A-\frac{1}{729}\)
A x 3 = \(\frac{728}{729}+A\)
A x 2 + A = \(\frac{728}{729}+A\)
A x 2 = \(\frac{728}{729}\)(bỏ A ở cả 2 vế)
A = \(\frac{728}{729}\div2=\frac{364}{729}\)
Đáp án = \(\frac{364}{729}\)
b, Phần này mình nghĩ là bạn sai đề rồi. Phải là \(\frac{45\times16-17}{45\times15+28}\)
\(G=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(G=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\)
\(3G=3+1+\frac{1}{3}+...+\frac{1}{3^4}\)
\(3G-G=\left(3+1+...+\frac{1}{3^4}\right)-\left(1+\frac{1}{3}+...+\frac{1}{3^5}\right)\)
\(2G=3-\frac{1}{3^5}\)
\(2G=3-\frac{1}{243}\)
\(2G=\frac{729}{243}-\frac{1}{243}\)
\(G=\frac{728}{243}:2\)
\(G=\frac{364}{243}\)
\(\frac{3}{1.2}+\frac{3}{2.3}+...+\frac{3}{x.\left(x+1\right)}=\frac{6042}{2015}\)
\(3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{6042}{2015}\)
\(1-\frac{1}{x+1}=\frac{6042}{2015}:3\)
\(1-\frac{1}{x-1}=\frac{2014}{2015}\)
\(\frac{1}{x-1}=1-\frac{2014}{2015}\)
\(\frac{1}{x-1}=\frac{1}{2015}\)
\(\Rightarrow x-1=2015\)
\(\Rightarrow x=2016\)
\(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(=\frac{81}{243}+\frac{27}{243}+\frac{9}{243}+\frac{3}{243}+\frac{1}{243}\)
\(=\frac{121}{243}\)
mk ko bít đúng hay ko nữa có gì mấy bạn góp ý cho mình nhé ! Thanks