K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2017

Ta có : abba = 1001a + 110b 

Mà 1001 chai hết cho 11 và 110 chai hết cho 11

Nên 1001a chia hết cho 11 và 110b chia hết cho11

Suy ra abba chia hết cho 11

22 tháng 2 2017

Ta có: S = 1.2 + 2.3 + 3.4 + ....... + 99.100 + 100.101

=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ....... + 100.101.102

=> 3S = 100.101.102

=> S = 100.101.102 / 3

=> S = 343400

26 tháng 7 2018

a) Ta có :  \(n+3⋮n+2\)

\(\Rightarrow\left(n+2\right)+1⋮n+2\)

Mà  \(n+2⋮n+2\)

\(\Rightarrow1⋮n+2\)

\(\Rightarrow n+2\inƯ_{\left(1\right)}=\left\{\pm1\right\}\)

Ta có bảng sau :

n+21-1
n-1-3

Mà  \(n\in N\)\(\Rightarrow\)ko có giá trị nào của n có thể thỏa mãn đk trên :)

26 tháng 7 2018

b)  \(2n+9⋮n-3\)

\(\Rightarrow2\left(n-3\right)+15⋮n-3\)

Mà  \(2\left(n-3\right)⋮n-3\)

\(\Rightarrow15⋮n-3\)

\(\Rightarrow n-3\inƯ_{\left(15\right)}=\left\{\pm1;\pm3;\pm5;\pm15\right\}\)

Lại có :  \(n\in N\)

Ta có bảng sau :

n-31-13-35-515-15
n4 (tm)2 (tm)6 (tm) 0 (tm)8 (tm)-2 (loại)18 (tm)-12 ( loại )

Vậy  \(n\in\left\{4;2;6;0;8;18\right\}\)

12 tháng 1 2018

         \(n^2-2n-22\) \(⋮\)\(n+3\)

\(\Leftrightarrow\)\(\left(n-5\right)\left(n+3\right)-7\)  \(⋮\)\(n+3\)

Ta thấy:    \(\left(n-5\right)\left(n+3\right)\)\(⋮\)\(n+3\)

nên    \(7\)\(⋮\)\(n+3\)

hay    \(n+3\) \(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta lập bảng sau:

\(n+3\)      \(-7\)         \(-1\)              \(1\)             \(7\)

\(n\)            \(-10\)         \(-4\)           \(-2\)            \(4\)

Vậy....

24 tháng 6 2017

\(M=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\)

\(M=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(M=2\left(1-\frac{1}{100}\right)\)

\(M=2.\frac{99}{100}\)

\(M=\frac{99}{50}\)

\(N=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{97.99}\)

\(N=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(N=\frac{3}{2}\left(1-\frac{1}{99}\right)\)

\(N=\frac{3}{2}.\frac{98}{99}\)

\(N=\frac{49}{33}\)

18 tháng 3 2018

Ta có :

\(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{14}< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}\)

\(\Rightarrow S< \frac{3.4}{10}\)

\(\Rightarrow S< \frac{6}{5}\)

Vì \(\frac{6}{5}< 2\)mà \(S< \frac{6}{5}\)nên \(S< 2\)( 1 )

Lại có :

\(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{14}>\frac{3}{14}+\frac{3}{14}+\frac{3}{14}+\frac{3}{14}\)

\(\Rightarrow S>\frac{3.4}{14}\)

\(\Rightarrow S>\frac{6}{7}\)

Vì \(S>\frac{6}{7}\)nên \(S\ge1\)( 2 )

Do đề bài cần chứng minh \(1< S< 2\)nên ta sẽ chọn trường hợp lớn hơn

\(\Rightarrow1< S< 2\)( ĐPCM )

Từ đó suy ra : \(S\notinℕ\)

Ta có 2n+111...1(n chữ số 1) = 3n+(111...1-n) (n chữ số 1)

Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3 => 111...1 - n (n chữ số 1) \(⋮\)3

mà 3n\(⋮\)3 => 2n+111...1(n chữ số 1) \(⋮\)3 (đpcm)

                                                                     

21 tháng 1 2018

Tích của n số tự nhiên liên tiếp luôn chia hết cho 1; 2; 3;... n
n(n+1)(n+2)(n+3)(n+4)(n+5)(n+6)(n+7) chia hết cho 2; 4; 8

=> Tích đó chia hết cho 2.4.8 = 128 (đpcm)