K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2016

(1+2+3+...+2009)(12.6-36.2):\(\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)\)

=(1+2+3+...+2009)(12.3.2-12.3.2):\(\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)\)

=(1+2+3+...+2009).0:\(\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)\)

=0

20 tháng 9 2019

\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)

\(\Rightarrow\frac{x+1}{2009}+1+\frac{x+2}{2008}+1+\frac{x+3}{2007}+1=\frac{x+10}{2000}+1+\frac{x+11}{1999}+1+\frac{x+12}{1998}+1\)

\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+1010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)

\(\Rightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}\right)=\left(x+2010\right)\left(\frac{1}{2000}+\frac{1}{1999}+\frac{1}{1998}\right)\)

\(\Rightarrow x+2010=0\) vì \(0< \frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}< \frac{1}{2000}+\frac{1}{1999}+\frac{1}{1998}\)

\(\Rightarrow x=-2010\)

20 tháng 9 2019

                                                            Bài giải

\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)

\(\Rightarrow\left(\frac{x+1}{2009}+1\right)+\left(\frac{x+2}{2008}+1\right)+\left(\frac{x+3}{2007}+1\right)=\left(\frac{x+10}{2000}+1\right)+\left(\frac{x+11}{1999}+1\right)+\left(\frac{x+12}{1998}+1\right)\)

\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)

\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-(\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998})=0\)

\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}=0\)

\(\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)

\(\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)\ne0\) nên \(x+2010=0\)

                                                                                                                          \(x=0-2010=-2010\)

8 tháng 7 2017

\(\dfrac{x+1}{2009}+\dfrac{x+2}{2008}+\dfrac{x+3}{2007}=\dfrac{x+10}{2000}+\dfrac{x+11}{1999}+\dfrac{x+12}{1998}\)

\(\Rightarrow\left(\dfrac{x+1}{2009}+1\right)+\left(\dfrac{x+2}{2008}+1\right)+\left(\dfrac{x+3}{2007}+1\right)=\left(\dfrac{x+10}{2000}+1\right)+\left(\dfrac{x+11}{1999}+1\right)+\left(\dfrac{x+12}{1998}+1\right)\)

\(\Rightarrow\dfrac{x+2010}{2009}+\dfrac{x+2010}{2008}+\dfrac{x+2010}{2007}=\dfrac{x+2010}{2000}+\dfrac{x+2010}{1999}+\dfrac{x+2010}{1998}\)\(\Rightarrow\dfrac{x+2010}{2009}+\dfrac{x+2010}{2008}+\dfrac{x+2010}{2007}-\dfrac{x+2010}{2000}-\dfrac{x+2010}{1999}-\dfrac{x+2010}{1998}=0\)\(\Rightarrow\left(x+2010\right)\left(\dfrac{1}{2009}+\dfrac{1}{2010}+\dfrac{1}{2007}-\dfrac{1}{2000}-\dfrac{1}{1999}-\dfrac{1}{1998}\right)=0\)\(\Rightarrow x+2010=0\Rightarrow x=-2010\)

25 tháng 9 2020

a. 

\(\left(1\frac{1}{4}+\frac{3}{5}\right):\left(-\frac{11}{12}\right)+\left(\frac{3}{8}-1\frac{2}{5}\right):\left(-\frac{11}{12}\right)\) 

\(=\left(\frac{5}{4}+\frac{3}{5}+\frac{3}{8}-\frac{7}{5}\right):\left(-\frac{11}{12}\right)\)  

\(=\left(\frac{13}{8}-\frac{4}{5}\right):\left(-\frac{11}{12}\right)\) 

\(=\frac{33}{40}:\left(-\frac{11}{12}\right)\) 

\(=\frac{33}{40}\cdot\left(-\frac{12}{11}\right)\) 

\(=\frac{-9}{10}\)  

b. 

\(\left(\frac{3}{8}-1\frac{2}{5}\right):\left(-\frac{11}{15}\right)+\left(1\frac{1}{4}+\frac{3}{5}\right):\left(-\frac{11}{15}\right)\) 

\(=\left(\frac{3}{8}-\frac{7}{5}+\frac{5}{4}+\frac{3}{5}\right):\left(-\frac{11}{15}\right)\)  

\(=\left(\frac{13}{8}-\frac{4}{5}\right):\left(-\frac{11}{15}\right)\) 

\(=\frac{33}{40}:\left(-\frac{11}{15}\right)\) 

\(=\frac{33}{40}\cdot\left(-\frac{15}{11}\right)\) 

\(=\frac{-9}{8}\)

có ai kb với mik ko

a: N=(7-8)+(9-10)+...+(2009-2010)

=(-1)+(-1)+....+(-1)

=-1*1002=-1002

b: Đặt A=2+3+4+...+2023

Số số hạng là 2023-2+1=2022(số)

Tổng là (2023+2)*2022/2=2047275

=>P=1-2047275=-2047274

24 tháng 9 2015

ta co

2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 +10 - 11 - 12 + 13 + ....+ 298 - 299 -300 + 301

=(2-3-4+5)+(6-7-8+9)+........+(298-299-300+301)

=0+0+....+0

=0