Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1 + 2 + 2 ^ 2 + 2 ^ 3 + .... + 2 ^ 62 + 2 ^ 63
2S = 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + .... + 2 ^ 63 + 2 ^ 64
2S - S = ( 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + .... + 2 ^ 63 + 2 ^ 64 )
- ( 1 + 2 + 2 ^ 2 + 2 ^ 3 + .... + 2 ^ 62 + 2 ^ 63 )
S = 2 ^ 64 - 1
\(=\frac{1}{3}+\frac{1}{15}+\frac{3}{5}-\left(\frac{3}{4}+\frac{2}{9}+\frac{1}{36}\right)+\frac{1}{64}=\frac{5+1+9}{15}-\frac{27+8+1}{36}+\frac{1}{64}.\)
\(=\frac{1}{64}\)
Tính nhanh:
\(A=\frac{2}{1+2}+2+\frac{3}{12+3}+...+2+3+\frac{20}{1+2+3+...+20}\)
Đặt \(A=\frac{2}{1+2}+2+\frac{3}{12+3}+...+2+3+\frac{20}{1+2+3+...+20}\)
\(=2-1+2+\frac{3}{12+3}+...+2+3+\frac{20}{1+2+3+...+20}\)
\(=\) Không biết! Nhờ Doraeiga với At the speed of light - Trang của At the speed of light - Học toán với OnlineMath giải nhé! Tui mới lớp 6 thôi! Chưa học tới bài này
\(A=\frac{2}{1+2}+\frac{2+3}{1+2+3}+....+\frac{2+3+...+20}{1+2+3+...+20}\)
\(A=\frac{2}{3}+\frac{5}{6}+...+\frac{209}{210}\)
\(A=\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{6}\right)+...+\left(1-\frac{1}{210}\right)\)
\(A=\left(1+1+...+1\right)-\left(\frac{1}{3}+\frac{1}{6}+....+\frac{1}{210}\right)\)
\(A=19-\left(\frac{2}{6}+\frac{2}{12}+...+\frac{2}{420}\right)\)
\(A=19-\left(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{20.21}\right)\)
\(A=19-\left[2\cdot\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{20}-\frac{1}{21}\right)\right]\)
\(A=19-\left[2\cdot\left(\frac{1}{2}-\frac{1}{21}\right)\right]\)
\(A=19-\left[2\cdot\frac{19}{42}\right]=19-\frac{19}{21}=\frac{380}{21}\)
Vậy A = .....
S2=(1+2+2^2+2^3+...+2^62+2^63)*2
=2+2^2+2^3+...+2^63+2^64
S2-S= (2+2^2+2^3+...+2^63+2^64) - (1+2+2^2+2^3+...+2^62+2^63)
S = 2^64 - 1
Ta có :
\(\left(\frac{3}{4}x-\frac{1}{2}\right)^2-\frac{1}{64}=0\)
\(\Leftrightarrow\)\(\left(\frac{3}{4}x-\frac{1}{2}\right)^2=\frac{1}{64}\)
\(\Leftrightarrow\)\(\left(\frac{3}{4}x-\frac{1}{2}\right)^2=\frac{1^2}{8^2}\)
\(\Leftrightarrow\)\(\left(\frac{3}{4}x-\frac{1}{2}\right)^2=\left(\frac{1}{8}\right)^2\)
\(\Leftrightarrow\)\(\frac{3}{4}x-\frac{1}{2}=\frac{1}{8}\)
\(\Leftrightarrow\)\(\frac{3}{4}x=\frac{1}{8}+\frac{1}{2}\)
\(\Leftrightarrow\)\(\frac{3}{4}x=\frac{5}{8}\)
\(\Leftrightarrow\)\(x=\frac{5}{8}:\frac{3}{4}\)
\(\Leftrightarrow\)\(x=\frac{5}{8}.\frac{4}{3}\)
\(\Leftrightarrow\)\(x=\frac{5}{2}.\frac{1}{3}\)
\(\Leftrightarrow\)\(x=\frac{5}{6}\)
Vậy \(x=\frac{5}{6}\)
Chúc bạn học tốt ~
\(\left(\frac{3}{4}.x-\frac{1}{2}\right)^2-\frac{1}{64}=0\)
\(\left(\frac{3}{4}.x-\frac{1}{2}\right)^2=0+\frac{1}{64}=\frac{1}{64}\)
\(\left(\frac{3}{4}.x-\frac{1}{2}\right)^2=\left(\frac{1}{8}\right)^2\)
=>\(\frac{3}{4}.x-\frac{1}{2}=\frac{1}{8}\)
\(\frac{3}{4}.x=\frac{1}{8}+\frac{1}{2}\)
\(\frac{3}{4}.x=\frac{5}{8}\)
\(x=\frac{5}{8}:\frac{3}{4}\)
\(x=\frac{5}{6}\)
Đặt \(A=1+2+2^2+2^3+...+2^{64}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{65}\)
\(\Rightarrow2A-A=2+2^2+2^3+...+2^{65}-\left(1+2+2^2+...+2^{64}\right)\)
\(\Rightarrow A=2+2^2+2^3+...+2^{65}-1-2-2^2-...-2^{64}\)
\(\Rightarrow A=2^{65}-1\)