Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = ((20 + 1) . 20 : 2) . 2 = 420
B = (25 + 20) . 6 : 2 = 135
C = ( 33 + 26) . 8 : 2 = 236
D = (1 + 100) .100 : 2 = 5050
a) \(\sqrt{60}-\sqrt{135}+\frac{1}{3}\sqrt{15}\)
\(=2\sqrt{15}-3\sqrt{15}+\frac{1}{3}\sqrt{15}\)
\(=-\frac{2}{3}\sqrt{15}\)
b) \(\sqrt{28}-\frac{1}{2}\sqrt{343}+2\sqrt{63}\)
\(=2\sqrt{7}-\frac{7}{2}\sqrt{7}+6\sqrt{7}\)
\(=\frac{9}{2}\sqrt{7}\)
c) \(\sqrt{12}-\frac{2}{3}\sqrt{27}+\sqrt{243}\)
\(=2\sqrt{3}-2\sqrt{3}+9\sqrt{3}\)
\(=9\sqrt{3}\)
đầu tiên chứng minh là mày không bị thiểu năng bằng cách xóa câu hỏi này đi nhé
a)\(\sqrt{28-16\sqrt{3}}=\sqrt{12-2.4.2\sqrt{3}+16}=\sqrt{\left(2\sqrt{3}\right)^2-2.4.2\sqrt{3}+4^2}=\sqrt{\left(2\sqrt{3}-4\right)^2}\)\(=\left|2\sqrt{3}-4\right|=4-2\sqrt{3}\)
b) \(\sqrt{29-12\sqrt{5}}=\sqrt{3^2-2.3.2\sqrt{5}+\left(2\sqrt{5}\right)^2}=\sqrt{\left(3-2\sqrt{5}\right)^2}=2\sqrt{5}-3\)
c)\(\sqrt{23-\sqrt{240}}=\sqrt{23-4\sqrt{15}}=\sqrt{\left(2\sqrt{5}\right)^2-2.\sqrt{3}.2\sqrt{5}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(2\sqrt{5}-\sqrt{3}\right)^2}=2\sqrt{5}-\sqrt{3}\)
d)\(\sqrt{33-12\sqrt{6}}=\sqrt{\left(2\sqrt{6}\right)^2-2.3.2\sqrt{6}+3^2}=\sqrt{\left(2\sqrt{6}-3\right)^2}=2\sqrt{6}-3\)
Trả lời:
a)\(\sqrt{28-16\sqrt{3}}\)
\(=\sqrt{16-16\sqrt{3}+12}\)
\(=\sqrt{\left(4-2\sqrt{3}\right)^2}\)
\(=4-2\sqrt{3}\)
b) \(\sqrt{29-12\sqrt{5}}\)
\(=\sqrt{20-12\sqrt{5}+9}\)
\(=\sqrt{\left(2\sqrt{5}-3\right)^2}\)
\(=2\sqrt{5}-3\)
c) \(\sqrt{23-\sqrt{240}}\)
\(=\sqrt{23-4\sqrt{15}}\)
\(=\sqrt{20-4\sqrt{15}+3}\)
\(=\sqrt{\left(2\sqrt{5}-\sqrt{3}\right)^2}\)
\(=2\sqrt{5}-\sqrt{3}\)
d) \(\sqrt{33-12\sqrt{6}}\)
\(=\sqrt{24-12\sqrt{6}+9}\)
\(=\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=2\sqrt{6}-3\)
Ta có \(A=\frac{\left(\sqrt{x-2}\right)^2-3^2}{\sqrt{x-2}-3}=\frac{\left(\sqrt{x-2}-3\right)\left(\sqrt{x-2}+3\right)}{\sqrt{x-2}-3}=\sqrt{x-2}+3\)
Với \(x=23-12\sqrt{3}\Rightarrow A=\sqrt{21-12\sqrt{3}}+3=\sqrt{\left(2\sqrt{3}-3\right)^2}+3\)
\(=2\sqrt{3}-3+3=2\sqrt{3}\)
Vậy \(A=2\sqrt{3}\)