Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.....\frac{9999}{10000}\)
\(A=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{99.101}{100.100}\)
\(A=\frac{\left(1.2.3.....99\right).\left(3.4.5.....101\right)}{\left(2.3.4.....100\right).\left(2.3.4.....100\right)}\)
\(A=\frac{1.101}{2.100}=\frac{101}{200}\)
\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}......\frac{9999}{10000}\)
\(A=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{99.101}{100.100}\)
\(A=\frac{1.2.3.4.....99}{2.3.4.5.....100}.\frac{3.4.5.6.....101}{2.3.4.5.....100}\)
\(A=\frac{1}{100}.\frac{101}{2}\)
\(A=\frac{101}{200}\)
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)....\left(\frac{1}{2003}-1\right)\)
=\(\frac{-1}{2}.\frac{-2}{3}.\frac{-3}{4}.....\frac{-2002}{2003}\)
=\(\frac{1}{2003}\)
\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}....\frac{9999}{10000}\)
=\(\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{99.101}{100.100}\)
=\(\frac{\left(1.2.3.....99\right)\left(3.4.5.....101\right)}{\left(2.3.4.....100\right)\left(2.3.4.....100\right)}\)
=\(\frac{101}{100.2}\)
=\(\frac{101}{200}\)
3/4.8/9.15/16......9999/10000
= 3.8.15.....9999/4.9.16......10000
=101/50
a; \(\dfrac{5}{6}\) + \(\dfrac{5}{12}\) + \(\dfrac{5}{20}\) + ... + \(\dfrac{5}{132}\)
= 5.(\(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\) + ..+ \(\dfrac{1}{132}\))
= 5.(\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + ... + \(\dfrac{1}{11.12}\))
= 5.(\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + ...+ \(\dfrac{1}{11}\) - \(\dfrac{1}{12}\))
= 5.(\(\dfrac{1}{2}\) - \(\dfrac{1}{12}\))
= 5.(\(\dfrac{6}{12}\) - \(\dfrac{1}{12}\))
= 5.\(\dfrac{5}{12}\)
= \(\dfrac{25}{12}\)
Bài 1:
a) x^3 = -27 = (-3)^3
=> x = -3
b) (2x-1)^3 = 8^3
=> 2x-1=8
2x = 9
x = 9/2
c) (2x-3)^2 = 9 = 3^2 = (-3)^2
=> 2x -3 = 3 => 2x = 6 => x = 3
2x - 3 = -3 => 2x = 0 => x = 0
KL:...
Bài 2:
a) \(\frac{2563.25^2}{5^{10}}=\frac{2563.5^4}{5^{10}}=\frac{2563}{5^6}\)
\(\frac{2^8.9^2}{6^4.8^2}=\frac{2^8.3^4}{2^{10}.3^4}=\frac{1}{2^2}=\frac{1}{4}\)
Bài 3:
ta có: (-5) < (-3)
=>(-5)^10 < (-3)^10
\(C=-\frac{1}{10}-\frac{1}{100}-\frac{1}{1000}-\frac{1}{10000}-\frac{1}{100000}\)
\(10C=-1-\frac{1}{10}-\frac{1}{100}-\frac{1}{1000}-\frac{1}{10000}\)
\(10C-C=\left(-1-\frac{1}{10}-\frac{1}{100}-\frac{1}{1000}-\frac{1}{10000}\right)-\left(\frac{-1}{10}-\frac{1}{100}-...-\frac{1}{100000}\right)\)
\(9C=-1+\frac{1}{100000}\)
\(C=\frac{\frac{1}{100000}-1}{9}\)
A = \(\dfrac{3}{4}\).\(\dfrac{8}{9}\).\(\dfrac{15}{16}\)...\(\dfrac{9999}{10000}\)
A = \(\dfrac{1.3.2.4..3.5......99.101}{2.2.3.3.4.4....100.100}\)
A = \(\dfrac{1.2.3..4.5.....99}{2.3.4.5.....99.100}\).\(\dfrac{3.4.5....100.101}{2.3.4.5...100}\)
A = \(\dfrac{1}{100}\).\(\dfrac{101}{2}\)
A = \(\dfrac{101}{200}\)
2; B = (1 - \(\dfrac{1}{2}\)).(1 - \(\dfrac{1}{8}\))...(1 - \(\dfrac{1}{n+1}\))
Xem lại đề bài.