Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(101^2\)
\(=\left(100+1\right)^2\)
\(=100^2+2.100.1+1^2\)
\(=10000+200+1\)
\(=10200+1\)
\(=10201\)
b) \(97.103\)
\(=\left(100-3\right).\left(100+3\right)\)
\(=100^2-3^2\)
\(=10000-9\)
\(=9991\)
c) \(77^2+23^2+77.46\)
\(=77^2+77.46+23^2\)
\(=77^2+2.77.23+23^2\)
\(=\left(77+23\right)^2\)
\(=100^2\)
\(=10000\)
d) \(105^2-5^2\)
\(=\left(105-5\right)\left(105+5\right)\)
\(=100.110\)
\(=11000\)
lâu lắm r moi lên h24, tớ giúp bn nhé:
*1012 = (100+1)2 = 104 + 2.100.1 +12 = 10201
*97.103= (100-3)(100+3) = 102 - 32 = 9991
* = 772 + 2.77.23 + 232 = (77+23)2 = 104
1. a) 1012 - 992 = (101 + 99)(101 - 99) = 200 . 2 = 400
b) 98.102 = (100 - 2)(100 + 2) = 1002 - 4 = 10000 - 4 = 9996
c) 772 + 232 + 77.46 = 772 + 232 + 77.23.2 = (23 + 77)2 = 1002 = 10000
d) M = x3 + 9x2 + 27x + 27 = (x + 3)3 = (7 + 3)3 = 103 = 1000
2. a) 2x2 + 3x - 5 = 0
=> 2x2 + 5x - 2x - 5 = 0
=> x(2x + 5) - (2x + 5) = 0
=> (x - 1)(2x + 5) = 0
=> \(\orbr{\begin{cases}x-1=0\\2x+5=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)
b) 2x2 - 11x - 51 = 0
=> 2x2 - 17x + 6x - 51 = 0
=> x(2x - 17) + 3(2x - 17) = 0
=> (x + 3)(2x - 17) = 0
=> \(\orbr{\begin{cases}x+3=0\\2x-17=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-3\\x=\frac{17}{2}\end{cases}}\)
a) 1012 - 992 = (101-99)(101+99)= 2,200 = 4002
b)98.102 = (100-2)(100+2) = 1002 - 22 =10000 - 4 = 9996
c) 772 + 232 +77.46 = 772 + 232 +2.77.23 = ( 77+23)2 = 1002 =1000
d) Với x=7 => M = 73+ 9.73 + 27.7 + 27 = 10.73 +27.8 = 10.343 + 216 = 3430+216 = 3646
2. a) 2x2 + 3x -5 =0
=> 2(x2 +3/2 x +9/16) -49/8 = 0
=> 2 (x+3/4)2 =49/8
=> (x+3/4)2 =49/16 = (7/4)2 = (-7/4)2
=> x+3/4 = 7/4 hoặc x+3/4 = -7/4
=> x= 1 hoặc x=-5/2
b) 2x2 -11x - 51 =0
=> 2(x2 -11/2x + 121/16) -529/8 = 0
=> (x -11/4)2 = 529/16 = (23/4)2 =(-23/4)2
=> x-11/4=23/4 hoặc x-11/4 = -23/4
=> x=17/2 hoặc x=-3
a) \(77^2+23^2+77\cdot46\)
\(=77^2+2\cdot77\cdot23+23^2\)
\(=\left(77+23\right)^2\)
\(=100^2\)
\(=10000\)
b) \(105^2-5^2\)
\(=\left(105-5\right)\left(105+5\right)\)
\(=100\cdot110\)
\(=11000\)
c) \(A=\left(x-y\right)\left(x^2+xy+y^2\right)+2y^3\)
\(\Rightarrow A=x^3+y^3+2y^3\)
\(\Rightarrow A=x^3+3y^3\)
Thay \(x=\dfrac{2}{3};y=\dfrac{1}{3}\) vào \(A\), ta có:
\(A=\left(\dfrac{2}{3}\right)^3+3\cdot\left(\dfrac{1}{3}\right)^3\)
\(\Rightarrow A=\dfrac{8}{27}+\dfrac{3}{27}\)
\(\Rightarrow A=\dfrac{11}{27}\)
\(\left(6x+1\right)^2+\left(6x-1\right)^2-2\left(1+6x\right)\left(6x-1\right)=\left[\left(6x+1\right)-\left(6x-1\right)\right]^2=\left(6x+1-6x+1\right)^2=2^2=4\)
\(x\left(2x^2-3\right)-x^2\left(5x+1\right)+x^2=2x^3-3x-5x^3-x^2+x^2=-3x^3-3x\)
\(101^2=\left(100+1\right)^2=100^2+200+1=10000+201=10201\)
\(97\times103=\left(100-3\right)\left(100+3\right)=100^2-3^2=10000-9=9991\)
\(105-52=53\)
Bài 1:
\(A=23^2+46\cdot37+37^2=23^2+2\cdot23\cdot37+37^2=\left(23+37\right)^2=60^2=3600\)
\(B=27^2-44\cdot27+22^2=27^2-2\cdot27\cdot22+22^2=\left(27-22\right)^2=5^2=25\)
Bài 2:
\(A=x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\)
Vì: \(\left(x-2\right)^2\ge0\) với mọi x
=> \(\left(x-2\right)^2+1\ge1\)
Vậy GTNN của A là 1 khi x=2
\(A=23^2+2.23.37+37^2=\left(23+37\right)^2=60^2=3600\)
\(B=27^2-2.27.22+22^2=\left(27-22\right)^2=5^2=25\)
\(A=x^2-4x+5=\left(x-2\right)^2+1\ge1\)
=> A min=1 khi x=2
1012 = (100 + 1)2 = 100² + 2.100.1 + 1² = 10000 + 200 + 1 = 10201
97 . 103 = (100 - 3)(100 + 3) = 1002 - 32 = 10000 - 9 = 9991
772 + 232 + 77.46 = 772 + 2. 23. 77 + 232 = (77 + 23)2 = 1002 = 10000
1052 - 52 = (105 - 5)(105 + 5) = 100 . 110 = 11000
tick nha