Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+...+\dfrac{1}{2187}+\dfrac{1}{6561}\)
\(3B=3\cdot\left(\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+...+\dfrac{1}{6561}\right)\)
\(3B=1+\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{729}+\dfrac{1}{2187}\)
\(3B-B=\left(1+\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{2187}\right)-\left(\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{6561}\right)\)
\(2B=\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{1}{9}-\dfrac{1}{9}\right)+...+\left(1-\dfrac{1}{6561}\right)\)
\(2B=0+0+...+1-\dfrac{1}{6561}\)
\(2B=1-\dfrac{1}{6561}\)
\(B=\left(1-\dfrac{1}{6561}\right):2\)
\(B=\dfrac{6560}{6561}:2\)
\(B=\dfrac{3280}{6561}\)
ta có :
= ( 1 + 59049 ) + ( 3 + 2187 ) + ( 9 + 6561 ) + ( 27 + 243 ) + ( 81 + 729 )
= 59050 + 2190 + 6570 + 270 + 810
= 59050 + ( 2190 + 810 ) + 6570 + 270
= 59050 + 3000 + 6570 + 270
= 59050 + ( 3000 + 6570 ) + 270
= 59050 + 9570 + 270
= 68620 + 270
= 68890
bài 1 tính nhanh
mik xin sửa đề câu a thành thế này ~
\(a,\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)
đặt \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)
\(A\cdot2=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(A\cdot2-A=\) ( \(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\) ) - ( \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\) )
\(A=1-\frac{1}{256}\)
\(A=\frac{255}{256}\)
\(b,\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
đặt \(B=\) \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
\(B\cdot3=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(B\cdot3-B=\) ( \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)) - \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\) )
\(B\cdot2=\) \(1-\frac{1}{729}\)
\(B\cdot2=\frac{728}{729}\)
\(B=\frac{728}{729}:2\)
\(B=\frac{364}{729}\)
\(c,\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\)
ĐẶT \(C=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\)
\(C=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}\)
\(C=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(C=\frac{1}{1}-\frac{1}{6}\)
\(C=\frac{5}{6}\)
Gọi tong trên là A
\(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{81}+\frac{1}{243}+\frac{1}{7129}+\frac{1}{2187}\)
\(3A=\frac{1}{3}+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{729}\)
\(3A-A=\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\right)-\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+\frac{1}{2187}\right)\)
\(2A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}-\frac{1}{3}-\frac{1}{9}-\frac{1}{27}-\frac{1}{81}-\frac{1}{243}-\frac{1}{729}-\frac{1}{2187}\)
\(2A=1-\frac{1}{2187}\)
\(2A=\frac{2186}{2187}\)
\(A=\frac{2186}{2187}:2\)
\(A=\frac{1093}{2187}\)
Vậy tổng A = \(\frac{1093}{2187}\)
\(3y=3\cdot\frac{1}{1}+3\cdot\frac{1}{3}+3\cdot\frac{1}{9}+...+3\cdot\frac{1}{729}+3\cdot\frac{1}{2187}\)
\(=3+\frac{1}{1}+\frac{1}{3}...+\frac{1}{729}\)
=> \(3y-y=3+\frac{1}{1}+\frac{1}{3}+..+\frac{1}{729}-\frac{1}{1}-\frac{1}{3}-...-\frac{1}{2187}\)
<=> 2y = 3- 1/2187
=> y = \(\frac{3-\frac{1}{2187}}{2}\)
a)
Vì 2/9=6/27=8/36=12/54=16/72=18/81 nên:
2/9+6/27+8/36+12/54+16/72+18/81=
2/9+2/9+2/9+2/9+2/9+2/9=
2/9*6=
12/9=
4/3
Vậy 2/9+6/27+8/36+12/54+16/72+18/81=4/3
b)
Ta có:
1-2/5=3/5
1-2/7=5/7
1-2/9=7/9
...
1-2/99=97/99
Vậy (1-2/5)*(1-2/7)*(1-2/9)*...*(1-2/99)=
3/5*5/7*7/9*...*97/99=
(3*5*7*...*97)/(5*7*9*...*99)=
3/99=
1/33
Vậy (1-2/5)*(1-2/7)*(1-2/9)*...*(1-2/99)=1/33
c)
Gọi biểu thức 1/2+1/4+1/8+1/16+...+1/1024 là S,ta có:
S=1/2+1/4+1/8+1/16+...+1/1024
S*2=1+1/2+1/4+1/8+...+1/512
S*2-S=(1+1/2+1/4+1/8+...+1/512)-(1/2+1/4+1/8+1/16+...+1/1024)
S=1-1/1024
S=1023/1024
Vậy 1/2+1/4+1/8+1/16+...+1/1024=1023/1024
\(A=\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2048}\)
\(A=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+...+\left(\frac{1}{1024}-\frac{1}{2048}\right)\)
\(A=1-\frac{1}{2048}\)
\(\Rightarrow\)\(A=\frac{2047}{2048}\)
\(3B=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
\(3B-B=1-\frac{1}{2187}\)
\(2B=\frac{2186}{2187}\)
\(\Rightarrow B=\frac{2186}{4374}=\frac{1093}{2187}\)
lấy MS chung là 2187, ta có:
729 + 243 + 81 + 9 + 3 + 1
________________________ = 1066/2187
2187