Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)A=1+2+22+...+21000
2A=2(1+2+22+...+21000)
2A=2+22+...+21001
2A-A=(2+22+...+21001)-(1+2+22+...+21000)
A=21001-1
b)B=3+32+...+32015
3B=3(3+32+...+32015)
3B=32+33+...+32016
3B-B=(32+33+...+32016)-(3+32+...+32015)
2B=22016-3
\(B=\frac{2^{2016}-3}{2}\)
c)C=4+42+...+4n
4C=4(4+42+...+4n)
4C=42+43+...+4n+1
4C-C=(42+43+...+4n+1)-(4+42+...+4n)
3C=4n+1-4
\(C=\frac{4^{n+1}-4}{3}\)
Ta có: A = 1 + 2 + 22 + ...... + 2100
=> 2A = 2 + 22 + 23 + ...... + 2101
=> 2A - A = 2101 - 1
=> A = 2101 - 1
B = 3 + 32 + 33 + ...... + 22015
=> 3B = 32 + 33 + 34 + ...... + 22016
=> 3B - B = 32016 - 3
=> 2B = 32016 - 3
=> B = 32016 - 3/2
C = 4 + 42 + 43 + .... + 4n
=> 4C = 42 + 43 + 44 + ..... + 4n + 1
=> 4C - C = 4n + 1 - 4
=> 3C = 4n + 1 - 4
=> C = 4n + 1 - 4 / 3
cho mi sửa lại:
\(a) A = 1^2+2^3+3^4+...+2014^{2015} b) B = 101^2+102^2+...+199^2+200^2 c) C = 1^3+2^4+3^5+4^6+...+99^{101}+100^{102}\)
Nhiều thế ưu tiên làm câu 2 trước
a) A = 1 + 3 + 32 + ... + 3100
3A = 3 + 32 + ... + 3101
3A - A = 3101 - 1
2A = 3101 - 1 => A = \(\frac{3^{101}-1}{2}\)
b) B = 1 + 4 + 42 + ... + 4100
4B = 4 + 42 + ... + 4101
4B - B = 4101 - 1
3B = 4101 - 1 => B = \(\frac{4^{101}-1}{3}\)
c) C = 1 + 5 + 52 + ... + 5100
5C = 5 + 52 + ... + 5101
5C - C = 5101 - 1
4C = 5101 - 1 => C = \(\frac{5^{101}-1}{4}\)
d) chả hiểu gì hết
a) A = 2 + 22 + 23 + ... + 2100
2A = 22 + 23 + 24 + ... + 2101
2A - A = (22 + 23 + 24 + ... + 2101) - (2 + 22 + 23 + ... + 2100)
A = 2101 - 2
b) B = 1 + 3 + 32 + ... + 3255
3B = 3 + 32 + 33 + ... + 3256
3B - B = (3 + 32 + 33 + ... + 3256) - (1 + 3 + 32 + ... + 3255)
2B = 3256 - 1
B = \(\frac{3^{256}-1}{2}\)
c) C = 1 + 4 + 42 + ... + 4100
4C = 4 + 42 + 43 + ... + 4101
4C - C = (4 + 42 + 43 + ... + 4101) - (1 + 4 + 42 + ... + 4100)
3C = 4101 - 1
C = \(\frac{4^{101}-1}{3}\)
d) D = 1 + 5 + 52 + ... + 51000
5D = 5 + 52 + 53 + ... + 51001
5D - D = (5 + 52 + 53 + ... + 51001) - (1 + 5 + 52 + ... + 51000)
4D = 51001 - 1
D = \(\frac{5^{1001}-1}{4}\)
\(A=\left[1+\left(-2\right)\right]+\left[3+\left(-4\right)\right]+....+\left[2013+\left(-2014\right)+2015\right]\)
\(A=\left(-1\right)+\left(-1\right)+....+\left(-1\right)+2015\left(\text{1007 số hạng }\left(-1\right)\right)=1008\)