Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{3}+\frac{1}{6}+...+\frac{1}{28}\)
\(A=\frac{2}{6}+\frac{2}{12}+...+\frac{2}{56}\)
\(A=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{7.8}\)
\(A=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\right)\)
\(A=2\left(\frac{1}{2}-\frac{1}{8}\right)\)
\(A=2\frac{3}{8}=\frac{3}{4}\)
Ủng hộ mk nha !!! ^_^
\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}\)
\(A=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+\frac{2}{56}\) (Tử số và mẫu số mỗi phân số nhân với 2 thì giá trị ko thay đổi)
\(A=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}+\frac{2}{7.8}\)
\(A:2=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(A:2=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(A:2=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
\(A=\frac{3}{8}.2=\frac{3}{4}\)
Khoảng cách giữa 2 số hạng liên tiếp là 7.
Số số hạng trong tổng là: (281-1) : 7 + 1 = 41 (số).
Vậy 1 + 8 + 15 + ... + 281 = (281+1) x 41 : 2 = 282 x 41 : 2 = 141 x 41 = 5781.
8=1+7
15=1+2*7
...
281=1+40*7
=>1+8+15+22+...+281=1+1+2*7+...+1+40*7
có bn số số hạng thì có bấy nhiêu số 1 => có 41 số
=> = 41+7*(1+2+3+...+40)=41+7*[(1+40)*40/2]=41+5740=5781
=> =
Ta có:
A = 1 + 3 + 5 + 7 +... + 101
A = \(\frac{102.51}{2}=2601\)
M = 16 - 18 + 20 - 22 + 24 - 26 + .. + 64 - 66 + 68
M = ( 16 - 18 ) + ( 20 - 22 ) + ( 24 - 26 ) + ... + ( 64 - 66 ) + 68
M = (- 2 + - 2 + -2 + ... + - 2 ) + 68
M = 25/2 . ( - 2 ) + 68
M = -25 + 68
M = 43
H = ( 1 + 2 + 3 +...+ 99 ) x ( 13 x 15 - 12 x 15 - 15 )
H = ( 1 + 2 + 3 +...+ 99 ) x { (13 - 12 - 1) x 15 }
H = ( 1 + 2 + 3 +...+ 99 ) x 0
H = 0
G = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + 10 - 11 - 12 + 13 + 14 - ... + 301 + 302
G = ( 1 + 2 ) + ( -3 - 4 ) + ( 5 + 6 ) + ( -7 - 8 ) + ( 9 + 10 ) + ( - 11 - 12 ) + ( 13 + 14 ) -...+ ( 301 + 302 )
G = ( 3 - 7 ) + ( 11 - 15 ) + ( 19 - 23 ) + 27 - ... + 603
G = -4 + - 4 + -4 + 27 - ... + 603
G = 75 x ( -4 ) + 603
G = -300 + 603
G = 303
2.
a) 1 + 2 + 3 + 4 +...+ 99 + 100 + 2 x X = 5052
= > \(\frac{100.101}{2}\)+ 2 x X = 5052
= > 5050 + 2 x X = 5052
= > 2X = 2
= > X = 1
Ta có : \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{1}{45}\)
\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+.....+\frac{2}{90}\)
\(=2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+.....+\frac{1}{90}\right)\)
\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{9.10}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{10}\right)=1-\frac{1}{5}=\frac{1}{4}\)
Đặt \(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{1}{36}+\frac{1}{45}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{72}+\frac{1}{90}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}+\frac{1}{9.10}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{2}-\frac{1}{10}\)
\(\Rightarrow\frac{1}{2}A=\frac{2}{5}\)
\(\Rightarrow A=\frac{2}{5}:\frac{1}{2}\)
\(\Rightarrow A=\frac{2}{5}.2\)
\(\Rightarrow A=\frac{4}{5}\)
1/3+1/6+1/10+1/15+1/21+1/28
= (140+70+42+28+20+15)/420
= 315/420
= (315:105)/ (420:105)
=3/4
Trả lời: 3/4
tinh nhanh a