K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2018

mk đi thi hsg mk bik chắc chắn mk ko sai đâu k mk nhé
3/1.4 +3/4.7+....+3/14.17
=1/1-1/4+1/4-1/7+...+1/14-1/17
=1-1/17
=16/17

21 tháng 3 2018

\(\frac{3}{1}-\frac{3}{4}+\frac{3}{4}-\frac{3}{7}+...\)\(\frac{3}{14}-\frac{3}{17}\)

\(\frac{3}{1}-\frac{3}{17}\)

\(\frac{18}{7}\)

20 tháng 3 2019

sửa lại đề \(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{3}{14.17}\)

\(S=\frac{4-1}{1.4}+\frac{7-4}{4.7}+\frac{11-7}{7.11}+\frac{14-11}{11.14}+\frac{17-14}{14.17}\)

\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)

\(S=1-\frac{1}{17}=\frac{16}{17}\)

20 tháng 3 2019

\(S=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....+\frac{1}{14}-\frac{1}{17}=1-\frac{1}{17}=\frac{16}{17}\)

19 tháng 2 2017

lúc đầu ý bn là 5/1.3 đúng k, mk chỉnh lại như thế cho tiện nhé

a) \(\frac{5}{1\times3}+\frac{5}{3\times5}+\frac{5}{5\times7}+...+\frac{5}{99\times101}\)

\(=\frac{5}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{5}{2}\left(1-\frac{1}{101}\right)\)

\(=\frac{5}{2}\times\frac{100}{101}=\frac{250}{101}\)

b) \(\frac{3^2}{8\times11}+\frac{3^2}{11\times14}+\frac{3^2}{14\times17}+...+\frac{3^2}{197\times200}\)

\(=\frac{9}{8\times11}+\frac{9}{11\times14}+\frac{9}{14\times17}+...+\frac{9}{197\times200}\)

\(=3\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+...+\frac{1}{197}-\frac{1}{200}\right)\)

\(=3\left(\frac{1}{8}-\frac{1}{200}\right)\)

\(=3\times\frac{3}{25}=\frac{9}{25}\)

19 tháng 2 2017

Ta có \(\frac{3^2}{8.11}+\frac{3^2}{11.14}+...+\frac{3^2}{197.200}\)

\(\Rightarrow3^2.\left(\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{197.200}\right)\)

\(\Rightarrow9.\frac{1}{3}.\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{197}-\frac{1}{200}\right)\)

\(\Rightarrow3.\left(1-\frac{1}{200}\right)\)

\(\Rightarrow3.\frac{199}{200}=\frac{597}{200}\)

6 tháng 1 2019

mình nghĩ bài náy sai đề rồi

2 tháng 8 2017

Ta có : \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{n\left(n+3\right)}=\frac{89}{270}\)

\(\Rightarrow\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{n\left(n+3\right)}=\frac{267}{270}\)

\(\Rightarrow1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{n}-\frac{1}{n+3}=\frac{267}{270}\)

\(\Rightarrow1-\frac{1}{n+3}=\frac{267}{270}\)

=> \(\frac{1}{n+3}=\frac{1}{90}\)

=> n + 3 = 90

=> n = 87 

2 tháng 8 2017

Nhân cả 2 vế với 3 ta được:

\(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{n\left(n+3\right)}=\frac{89}{90}.\)

Vậy tử số của các phân số trên đã bằng hiệu của 2 thừa số ở mẫu số.(Ngoại trừ P/S\(\frac{89}{90}.\))

=> ta được:

\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-...+\frac{1}{n}-\frac{1}{n+3}=\frac{89}{90}.\)

Rút gọn hết ta được :

\(1-\frac{1}{n+3}=\frac{89}{90}\)

\(\frac{1}{n+3}=1-\frac{89}{90}\)

\(\frac{1}{n+3}=\frac{1}{90}.\)

Vì 1=1 => n+3=90

          n = 90-3

          n=87

Vậy n=87.

                                                                    Đ/S:87

20 tháng 7 2016

\(a,A=\frac{3}{2}+\frac{3}{6}+\frac{3}{12}+\frac{3}{20}+...+\frac{3}{90}\)

\(A=3.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right)\)

\(A=3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(A=3.\left(1-\frac{1}{10}\right)\)

\(A=3.\frac{9}{10}=\frac{27}{10}\)

\(b,B=\frac{2}{2.5}+\frac{2}{5.8}+\frac{2}{8.11}+\frac{2}{11.14}+\frac{2}{14.17}\)

\(B.\frac{3}{2}=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}\)

\(B.\frac{3}{2}=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)

\(B.\frac{3}{2}=\frac{1}{2}-\frac{1}{17}\)

\(B=\frac{15}{34}:\frac{3}{2}=\frac{5}{17}\)

20 tháng 7 2016

a) Lấy A chia 3

b) Lấy B nhân 3/2

1 tháng 3 2018

a, Ta có \(A=\frac{3}{3.5}+\frac{3}{5.7}+....+\frac{3}{49.51}\)

\(=\frac{3}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{49.51}\right)\)

\(=\frac{3}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{49}-\frac{1}{51}\right)\)

\(=\frac{3}{2}.\left(\frac{1}{3}-\frac{1}{51}\right)\)

\(=\frac{1}{2}-\frac{3}{102}=\frac{48}{102}=\frac{24}{51}\)

b,Ta có \(\frac{1}{2}+\frac{2}{2.4}+\frac{3}{4.7}+\frac{4}{7.11}+\frac{5}{11.16}\)

\(=\frac{2-1}{2}+\frac{4-2}{2.4}+\frac{7-4}{4.7}+\frac{11-7}{7.11}+\frac{16-11}{11.16}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}\)

\(=\frac{15}{16}\)

1 tháng 3 2018

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!1111

18 tháng 7 2017

Đặt \(A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}\)

\(A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)

\(A=\frac{1}{2}-\frac{1}{17}\)

\(A=\frac{15}{34}\)

18 tháng 7 2017

\(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)\(\frac{1}{2}-\frac{1}{17}\)=\(\frac{15}{34}\)

22 tháng 4 2015

s=(1-1/4+1/4-1/7+1/7-1/10+...+1/100-1/103)+(1/103-1/104+1/104-1/105+1/105-1/106+1/106-1/107)

  =(1-1/103)+(1/103-1/107)

  =1           -         1/107

  =106/107

 

3 tháng 8 2018

tớ ko biết

3 tháng 8 2018

S = 3 - \(\frac{3}{100}\)\(\frac{300}{100}-\frac{3}{100}=\frac{297}{100}\)