K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2016

\(\frac{1}{337.291}+\frac{583}{291}-\frac{2}{337.291}=\frac{583}{291}-\frac{1}{337.291}=\frac{583.337-1}{337.291}=\frac{169652}{98067}\)

29 tháng 7 2016

\(N=\frac{1}{337}+\frac{583}{291}-\frac{290}{291\cdot337}-\frac{2}{291\cdot337}=\frac{291-196471}{337.291}-\frac{292}{337\cdot291}=\frac{-196472}{337.291}\)

15 tháng 7 2017

> nhé bạn

11 tháng 9 2017

\(\frac{84}{-83}>\frac{-337}{331}\)

24 tháng 6 2019

\(\frac{8}{9}-\frac{1}{72}-\frac{1}{56}-...-\frac{1}{2}\)

\(\frac{8}{9}-\left(\frac{1}{72}+\frac{1}{56}+...+\frac{1}{2}\right)\)

\(\frac{8}{9}-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{72}\right)\)

\(\frac{8}{9}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\right)\)

\(\frac{8}{9}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\right)\)

\(\frac{8}{9}-\left(1-\frac{1}{9}\right)\)

\(\frac{8}{9}-\frac{8}{9}\)

\(0\)

Chúc bạn học tốt !!!

18 tháng 7 2020

Trả lời:

\(\frac{8}{9}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)

\(=\frac{8}{9}-\left(\frac{1}{72}+\frac{1}{56}+\frac{1}{42}+\frac{1}{30}+\frac{1}{20}+\frac{1}{12}+\frac{1}{6}+\frac{1}{2}\right)\)

\(=\frac{8}{9}-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\right)\)

\(=\frac{8}{9}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\right)\)

\(=\frac{8}{9}-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)\)

\(=\frac{8}{9}-\left(\frac{1}{1}-\frac{1}{9}\right)\)

\(=\frac{8}{9}-\frac{8}{9}\)

\(=0\)

8 tháng 12 2016

\(1-\frac{1}{n^2}=\frac{n^2-1}{n^2}=\frac{\left(n-1\right)\left(n+1\right)}{n^2}\)

\(\frac{\left(1.3.2.4.3.5......\left(n-2\right)\left(n\right)\left(n-1\right)\left(n+1\right)\right)}{2.2.3.3.4.4...n.n}=\frac{\left(n+1\right)}{2.n}\)

Gọi \(S=\frac{2009}{1}+\frac{2008}{2}+...+\frac{1}{2009}\)

\(\Rightarrow S=\frac{2010-1}{1}+\frac{2010-2}{2}+...+\frac{2010-2009}{2009}\)

\(\Rightarrow S=2010-1+\frac{2010}{2}-1+...+\frac{2010}{2009}-1\)

\(\Rightarrow S=2010+\frac{2010}{2}+...+\frac{2010}{2009}-\left(1+1+..+1\right)\)

\(\Rightarrow S=2010+\frac{2010}{2}+...+\frac{2010}{2009}-2009\)

\(\Rightarrow S=\frac{2010}{2}+\frac{2010}{3}+...+\frac{2010}{2009}+1\)

\(\Rightarrow S=\frac{2010}{2}+\frac{2010}{3}+..+\frac{2010}{2009}+\frac{2010}{2010}\)

\(\Rightarrow S=2010\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}\right)\)

Khi đó \(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}}{2010\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}\right)}=\frac{1}{2010}\)

17 tháng 8 2018

C = 1/3 + -3/4 + 3/5 + 1/57 + -1/36 + 1/15 + -2/9

C = ( 1/3 + 1/57 ) + ( -3/4 + -1/36 ) + ( 3/5 + 1/15 ) + -2/9 

C = ( 19/57 + 1/57 ) + ( -27/36 + -1/36 ) + ( 9/15 + 1/15 ) + -2/9 

C = 20/57 + -28/36 + 10/15 + -2/9 

C = 20/57 + -7/9 + 2/3 + -2/9

C = ( 20/57 + 2/3 ) + ( -7/9 + -2/9 )

C = 58/57 + -1 

C = 1/57

D = 1/2 + -1/5 + -5/7 + 1/6 + -3/35 + 1/3 + 1/41

D = ( 1/2 + 1/3 + 1/6 ) + ( -1/5 + -5/7 +-3/35 ) + 1/41

D = ( 3/6 + 2/6 + 1/6 ) + ( -7/35 + -25/35 + -3/35 ) + 1/41

D = 1 + -1 + 1/41

D = 1/41

E = -1/2 + 3/5 + -1/9 + 1/127 + -7/18 + 4/35 + 2/7 

E = ( -1/2 + -1/9 + -7/18 ) + ( 3/5 + 4/35 ) + 1/127 + 2/7

E = ( -9/18 + -2/18 + -7/18 ) + ( 21/35 + 4/35 ) + 1/127 + 2/7

E = -1 + 5/7 + 1/257 + 2/7 

E = -1 + ( 5/7 + 2/7 ) + 1/127

E = -1 + 1 + 1/127

E = 1/127

17 tháng 8 2018

\(C=\frac{1}{3}+\frac{-3}{4}+\frac{3}{5}+\frac{1}{57}+\frac{-1}{36}+\frac{1}{15}+\frac{-2}{9}.\)

\(C=\left(\frac{1}{3}+\frac{3}{5}+\frac{1}{15}\right)-\left(\frac{3}{4}+\frac{1}{36}+\frac{2}{9}\right)+\frac{1}{57}\)

\(C=1-1+\frac{1}{57}\)

\(C=\frac{1}{57}\)

24 tháng 6 2017

Theo đề ta có: \(\frac{\left(1+2+3+...+100\right)\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}\right)\left(6,3.12-21.3,6\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}\)

\(=\frac{\left(1+2+3...+100\right)\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).0}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}\)

= 0

22 tháng 9 2017

bạn trên kia làm đúng rồi