Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3\times\left(\frac{3}{1\times4}+\frac{3}{4\times7}+\frac{3}{7\times10}+...+\frac{3}{97\times100}\right)\)
\(A=3\times\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(A=3\times\left(1-\frac{1}{100}\right)\)
\(A=3\times\frac{99}{100}\)
\(A=\frac{297}{100}\)
\(A=\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+......+\frac{3^2}{97.100}\)
\(A=3.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{97.100}\right)\)
Đặt \(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\)
Ta có: \(S=\frac{3}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+.....+\frac{3}{97.100}\right)\)
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.....+\frac{1}{97}-\frac{1}{100}\)
\(S=1-\frac{1}{100}=\frac{99}{100}\)
\(\Rightarrow A=3.S=3.\frac{99}{100}=\frac{297}{100}\)
Mik làm 1 phần rùi bạn làm tương tự nhá :
Ta có : 3.B = 3 + 32 + 33 + ...+ 3101
=> 3.B - B = ( 3 + 32 + 33 +...+ 3101 ) - ( 1 + 3 + 32 + ...+ 3100 )
=> 2.B = 3101 - 1
=> B = \(\frac{3^{101}-1}{2}\)
Không tìm được giá trị cụ thể bạn nhá
3B=3(1+3+3^2+3^3+...+3^100)
2B=3B-B=(3+3^2+3^3+...+3^101)-(1+3+3^2+3^3+...+3^100)
=3^101-1
A=3²/1.4+3²/4.7+3²/7.10+...+3²/97.100
A=9/1.4+9/4.7+9/7.10+...+9/97.100
A=9x(1/1.4+1/4.7+1/7.10+...+1/97.100)
A=9x(1-1/4+1/4-1/7+1/7-1/10+...+1/97-1/100)
A=9x(1-1/100)
A=9x99/100
A=9x33/100
A=297/10=2,97
ahihi !! tự nhiên đăng lên xong rồi suy nghĩ cái biết kết quả luôn, sory mọi ng nha
ta có 3^8=(3^4)^2=81^2 nên 81^2-81^2=0
Mà số nào nhân 0 cũng =0nên phép tính trên =0
nhớ h ,nếu không lần sau khỏi trả lời !