K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2015

a,  2015^2 - 2014^2

=(2015-2014)(2015+2014)

=1.4029

=4029

 

b,  1^2 - 2^2 + 3^2 - 4^2 + ......+  99^2 - 100^2

=(1-2)(1+2)+(3-4)(3+4)+...+(99-100)(99+100)

=-(1+2)-(3+4)-...-(99+100)

=-1-2-3-4-...-99-100

=(-1-100).100:2=-5050

 

20 tháng 11 2015

Nhớ ghi dấu ngoặc tránh giải sai. 

\(a.\)  \(\frac{x+4}{2x+6}+\frac{3}{x^2-9}\)

Ta có: 

\(2x+6=2\left(x+3\right)\)

\(x^2-9=\left(x-3\right)\left(x+3\right)\)

nên \(MTC:\)  \(2\left(x-3\right)\left(x+3\right)\)

Do đó:  \(\frac{x+4}{2x+6}+\frac{3}{x^2-9}=\frac{x+4}{2\left(x+3\right)}+\frac{3}{\left(x-3\right)\left(x+3\right)}=\frac{\left(x+4\right)\left(x-3\right)}{2\left(x-3\right)\left(x+3\right)}+\frac{2.3}{2\left(x-3\right)\left(x+3\right)}=\frac{x^2+x-12+6}{2\left(x-3\right)\left(x+3\right)}\)

\(=\frac{x^2+x-6}{2\left(x-3\right)\left(x+3\right)}=\frac{x^2-2x+3x-6}{2\left(x-3\right)\left(x+3\right)}=\frac{x\left(x-2\right)+3\left(x-2\right)}{2\left(x-3\right)\left(x+3\right)}=\frac{\left(x-2\right)\left(x+3\right)}{2\left(x-3\right)\left(x+3\right)}=\frac{x-2}{2\left(x-3\right)}\)

 

20 tháng 11 2015

tick mình đi mình giải cho nha

29 tháng 7 2018

\(73^2-27^2=\left(73+27\right)\left(73-27\right)\)

                     \(=100\cdot46=4600\)

\(2002^2-2^2=\left(2002-2\right)\cdot\left(2002+2\right)\)

                       \(=2000\cdot2004=4008000\)

hok tốt .

20 tháng 10 2015

\(\frac{2}{8x-4x^2-5}\)

Xét mẫu:    \(8x-4x^2-5=-4x^2+8x-4-1=-\left(4x^2-8x+4\right)-1=-\left(2x-2\right)^2-1\)

 \(-\left(2x-2\right)^2\le0\Rightarrow-\left(2x-2\right)^2-1\le-1\)

 Nên  \(\frac{2}{8x-4x^2-5}\le\frac{2}{-1}\le-2\)

Vậy giá trị lớn nhất của \(\frac{2}{8x-4x^2-5}\)-2

1 tháng 12 2015

câu b nè

\(\frac{3x+1}{\left(x-1\right)^2}-\frac{1}{x+1}-\frac{x+3}{x^2-1}\)

=\(\frac{\left(3x+1\right)\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)^2\left(x+1\right)}-\frac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)^2\left(x+1\right)}\)

=\(\frac{\left(3x^2+x+3x+1\right)-\left(x^2-2x+1\right)-\left(x^2-x-3+3x\right)}{\left(x-1\right)^2\left(x+1\right)}\)

=\(\frac{3x^2+4x+1-x^2+2x-1-x^2-2x+3}{\left(x-1\right)^2\left(x+1\right)}=\frac{x^2+4x+3}{\left(x+1\right)\left(x-1^2\right)}\)

=\(\frac{\left(x+1\right)\left(x+3\right)}{\left(x+1\right)\left(x-1\right)^2}=\frac{x+3}{\left(x-1\right)^2}\)

1 tháng 11 2015

\(x^3+8x^2+17x+10\)

\(=x^3+2x^2+x^2+5x^2+10x+5x+2x+10\)

\(=\left(x^3+x^2\right)+\left(2x^2+2x\right)+\left(5x^2+5x\right)+\left(10x+10\right)\)

\(=x^2\left(x+1\right)+2x\left(x+1\right)+5x\left(x+1\right)+10\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+2x+5x+10\right)\)

\(=\left(x+1\right)\left[x\left(x+2\right)+5\left(x+2\right)\right]\)

\(=\left(x+1\right)\left(x+2\right)\left(x+5\right)\)