Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1+2+4+8+16+32+64+128+256+512+1024+2048
=1+(2+8)+(4+16)+(32+128)+(64+256)+(512+2048)+1024
=1+10+20+160+320+2560+1024
=4095
1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + 512 + 1024 + 2048 = 4095
k nha công chúa nụ cười =_= ^_^
A = 2+4+8+16+...+1024+2048
=> A = 2 + 22 + 23 + ... + 211
=> 2A = 22 + 23 + 24 ... + 212
=> 2A - A = 22 + 23 + 24 ... + 212 - 2 + 22 + 23 + ... + 211
=> A = 212 - 2
Số số hạng là:
(2048-2):2+1=1024(số)
Tổng dãy trên là:
(1048+2)x2024:2=1062600
Đặt \(A=1+2+4+.........+4096\)
\(2A=2+4+8+......+8192\)
\(\Rightarrow2A-A=8192-1\)
\(\Rightarrow A=8191\)
Đặt \(S=1+2+4+...+1024+2048+4096\)
\(S=1+2^1+2^2+2^3+....+2^{10}+2^{11}+2^{12}\)
\(2S=2+2^2+2^3+....+2^{11}+2^{12}+2^{13}\)
\(2S-S=\left(2+2^2+2^3+....+2^{12}+2^{13}\right)-\left(1+2+2^2+....+2^{11}+2^{12}\right)\)
\(S=2^{13}-1=8192-1=8191\)
A=\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{512}-\frac{1}{1024}\)
=1-1/1024
=1023/1024
C = 1 + 2 + 4 + 8 + ... + 512 + 1024
2C = 2 + 4 + 8 + 16 + ... + 1024 + 2048
2C - C = (2 + 4 + 8 + 16 + ... + 1024 + 2048) - (1 + 2 + 4 + 8 + ... + 512 + 1024)
C = 2048 - 1
C = 2047
Ta có : \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\)
Đặ A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\)(1)
=> 2A = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}+\frac{1}{2^9}\)(2)
Lấy (2) trừ (1) theo vế ta có :
2A - A = \(\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\right)\)
=> A = \(1-\frac{1}{2^{10}}=\frac{2^{10}-1}{2^{20}}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{10}}\)
\(\Leftrightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^9}\)
\(\Rightarrow2A-A=1-\frac{1}{2^{10}}=\frac{1023}{1024}\)
Đặt A = 1 + 2 + 4 + 8 + 16 + ... + 1024
2A = 2 + 4 + 6 + 8 + 16 + 32 + ... + 2048
2A - A = ( 2 + 4 + 8 + 16 + 32 + ... + 2048 ) - ( 1 + 2 + 4 + 8 + 16 + ... + 1024 )
A = 2048 - 1
A = 2047