\(\left(100-1^2\right).\left(100-2^2\right)....\left(100-25^2\right)\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2015

\(\left[\frac{1}{100}-\left(\frac{1}{1}\right)^2\right]\cdot\left[\frac{1}{100}-\left(\frac{1}{2}\right)^2\right]\cdot...\cdot\left[\frac{1}{100}-\left(\frac{1}{10}\right)^2\right]\cdot...\cdot\left[\frac{1}{100}-\left(\frac{1}{20}\right)^2\right]\)\(=\left[\frac{1}{100}-\left(\frac{1}{1}\right)^2\right]\cdot\left[\frac{1}{100}-\left(\frac{1}{2}\right)^2\right]\cdot...\cdot\left[\frac{1}{100}-\frac{1}{100}\right]\cdot...\cdot\left[\frac{1}{100}-\left(\frac{1}{20}\right)^2\right]\)\(=\left[\frac{1}{100}-\left(\frac{1}{1}\right)^2\right]\cdot\left[\frac{1}{100}-\left(\frac{1}{2}\right)^2\right]\cdot...\cdot0\cdot...\cdot\left[\frac{1}{100}-\left(\frac{1}{20}\right)^2\right]\)=0

5 tháng 6 2015

\(\left(\frac{1}{100}-\left(\frac{1}{1}\right)^2\right).\left(\frac{1}{100}-\left(\frac{1}{2}\right)^2\right)......\left(\frac{1}{100}-\left(\frac{1}{20}\right)^2\right)\)

\(=\left(\frac{1}{100}-\left(\frac{1}{1}\right)^2\right)....\left(\frac{1}{100}-\left(\frac{1}{10}\right)^2\right)...\left(\frac{1}{100}-\left(\frac{1}{20}\right)^2\right)\)

\(=\left(\frac{1}{100}-\left(\frac{1}{1}\right)^2\right)...\left(\frac{1}{100}-\frac{1}{100}\right)...\left(\frac{1}{100}-\left(\frac{1}{20}\right)^2\right)\)

\(=\left(\frac{1}{100}-\left(\frac{1}{1}\right)^2\right).....0......\left(\frac{1}{100}-\left(\frac{1}{20}\right)^2\right)\)

\(=0\)

 

2 tháng 4 2023

1+1=3 :)))

14 tháng 7 2017

\(\frac{1+\left[1+2\right]+\left[1+2+3\right]+...+\left[1+2+3+...+100\right]}{100.1+99.2+98.3+...+2.99+1.100}=\frac{1.2:2+2.3:2+3.4:2+...+100.101:2}{100.1+99.2+98.3+...+2.99+1.100}\)

\(=\frac{\frac{1}{2}\left[1.2+2.3+3.4+...+100.101\right]}{100.1+99.2+98.3+...+2.99+1.100}=\frac{\frac{1}{2}\cdot\frac{1}{3}\left[1.2.3-0.1.2+2.3.4-1.2.3+...+100.101.102-99.100.101\right]}{1.100+2.100-1.2+3.100-2.3+...+100.100-99.100}\)

\(=\frac{\frac{1}{6}\cdot100.101.102}{100\left[1+2+3+...+100\right]-\left[1.2+2.3+...+99.100\right]}=\frac{171700}{100\cdot\frac{100.101}{2}-\frac{99.100\cdot101}{3}}\)

\(=\frac{171700}{505000-333300}=\frac{171700}{171700}=1\)

AI THẤY ĐÚNG NHỚ ỦNG HỘ NHÉ

5 tháng 10 2018

Vì tích trên có 100 thừa số nên thừa số 100-n là thừa số thứ 100.

Ta thấy: 100-1 là thừa số thứ 1

              100-2 là thừa số thứ 2

              100-3 là thừa số thứ 3

              ……………………..

=>n=100=>100-n=100-100=0

Ta có: A=(100-1).(100-2).(100-3)…(100-n)

  =>     A=(100-1).(100-2).(100-3)…0

  =>     A=0

Vậy A=0

26 tháng 3 2018

\(\frac{1+\left(1+2\right)+\left(1+2+3\right)+.....+\left(1+2+3+4+......+100\right)}{\left(1.100+2.99+3.98+.......+99.2+100.1\right).2013}\)

\(=\frac{1.100+2.99+3.98+......+99.2+100.1}{\left(1.100+2.99+3.98+.....+99.2+100.1\right).2013}\)

\(=\frac{1}{2013}\)

15 tháng 3 2018

D = 2574 nha

15 tháng 3 2018

giải thích kĩ ra nha

29 tháng 3 2017

a) \(=\frac{3}{2}.\frac{4}{3}....\frac{100}{99}=\frac{100}{2}=50\)

29 tháng 3 2017

a) =3/2 . 4/3 . 5/4 ...100/99

   =\(\frac{3.4.5...100}{2.3.4..99}\)

  =\(\frac{100}{2}\)

b) =