K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2018

a) A= 20182 -20172 = (2018-2017)(2018+2017) = 1.4035=4035

b) B = 20182 -20172 + 20162 - 20152 + ... + 22 -12

= (2018-2017)(2018+2017)+(2016-2015)(2016+2015)...(2-1)(2+1)

=2018+2017+2016+2015+...+2+1

=(2018+1).1004=2027076

3 tháng 12 2017

Ta có \(A=\frac{2017-2018}{2017+2018}=\frac{\left(2017-2018\right)\left(2017+2018\right)}{\left(2017+2018\right)^2}=\frac{2017^2-2018^2}{2017^2+2018^2+2.2017.2018}< \frac{2017^2-2018^2}{2017^2+2018^2}=B\)

Vậy A<B

19 tháng 8 2017

b) \(x,y\ge1\Rightarrow xy\ge1\)

BĐT đã cho tương đương với:

\(\left(\dfrac{1}{1+x^2}-\dfrac{1}{1+xy}\right)+\left(\dfrac{1}{1+y^2}-\dfrac{1}{1+xy}\right)\ge0\)

\(\Leftrightarrow\dfrac{xy-x^2}{\left(1+x^2\right)\left(1+xy\right)}+\dfrac{xy-y^2}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow+\dfrac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\dfrac{y\left(x-y\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(y-x\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)

BĐT cuối luôn đúng nên ta có đpcm

Đẳng thức xảy ra khi x=y hoặc xy=1

13 tháng 7 2017

A=24783,14746B=49566,29188

Vậy A<B

14 tháng 7 2017

Ta thấy \(A=\frac{2018-2017}{2018+2017}=\frac{2018^2-2017^2}{\left(2018+2017\right)^2}=\frac{2018^2-2017^2}{2018^2+2.2018.2017+2017^2}\)

Mà \(2018^2+2.2018.2017+2017^2>2018^2+2017^2\)

\(\Rightarrow\frac{2018^2-2017^2}{2018^2+2.2018.2017+2017^2}< \frac{2018^2-2017^2}{2018^2+2017^2}\)

Vậy A<B

6 tháng 10 2018

      \(2018^2-2017.2019\)

\(=2018^2-\left(2018-1\right)\left(2018+1\right)\)

\(=2018^2-\left(2018^2-1\right)=1\)

      \(56^2+56.88+44^2\)

\(=56^2+2.56.44+44^2\)

\(=\left(56+44\right)^2\)

\(=100^2=10000\)

       \(\frac{2018^3+1}{2018^2-2017}\)

\(=\frac{\left(2018+1\right)\left(2018^2-2018+1\right)}{2018^2-2017}\)

\(=\frac{2019\left(2018^2-2017\right)}{2018^2-2017}=2019\)

Chúc bạn học tốt.

14 tháng 10 2019

2017.2019 = (2018-1)(2018+1) = 20182 -1 => a =1

b= 20183 +1 (???)

17 tháng 9 2017

từ giả thiết => a;b;c<=1

\(a\le1\\ \Rightarrow a^3\le a^2\)

tt b^3<=b^2;c^3<=c^2

=>a^3+b^3+c^3\(\le\)a^2+b^2+c^2

dấu = xảy ra <=> a=0hoặc a=1 tt với b;c và a^2+b^2+c^2=a^3+b^3+c^3=1

=>S=1

2 tháng 2 2019

a2 + b2 + c2 = a3 + b3 + c3 = 1

\(\Rightarrow\)a2 ( a - 1 ) + b2 ( b - 1 ) + c2 ( c - 1 ) = 0 ( 1 )

a2 + b2 + c2 = 1 ; a2,b2,c2 \(\ge\)\(\Rightarrow\)a2,b2,c2 \(\le\)1

\(\Rightarrow\)\(\le\)1,b \(\le\)1, c \(\le\)\(\Rightarrow\)1 - a \(\ge\)0 ; 1-b  \(\ge\)0 ; 1 - c \(\ge\)0

\(\Rightarrow\)a2 ( a - 1 ) + b2 ( b - 1 ) + c2 ( c - 1 ) \(\le\)0 ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)a2 ( a - 1 ) = b2 ( b - 1 ) = c2 ( c - 1 ) = 0

\(\Rightarrow\)a = b = 0 ; c = 1 hoặc b = c = 0 ; a = 1 hoặc a = c = 0 ; b = 1

\(\Rightarrow\)S = 1

6 tháng 9 2017

Bài 1:

a, \(x^2+10x+26+y^2+2y\)

\(=x^2+2.x.5+5^2+y^2+2.y.1+1^2\)

\(=\left(x+5\right)^2+\left(y+1\right)^2\)

b, \(x^2-2xy+2y^2+2y+1\)

\(=x^2-2.x.y+y^2+y^2+2.y.1+1^2\)

\(=\left(x-y\right)^2+\left(y+1\right)^2\)

c, \(4x^2+2z^2-4xz-2z+1\)

\(=\left(2x\right)^2-2.2x.z+z^2+z^2-2.z.1+1^2\)

\(=\left(2x-z\right)^2+\left(z-1\right)^2\)

Chúc bạn học tốt!!!

Bài1:

Bn kia giải r nhé

Bài 2:

a)\(127^2+146.127+73^2=127^2+2.73.127+73^2\)

=\(\left(127+73\right)^2=200^2=40000\)

b)\(31,8^2-63,6.21,8+21,8^2=\left(31,8-21,8\right)^2=10^2=100\)

c)\(2018^2-2017^2+2016^2-2015^2+...+2^2-1\)

=\(\left(2018+2017\right)+\left(2015+2016\right)+...+\left(2+1\right)\)

=4025+4031+...+3

=...(bn tự tính)

d)\(2017^2-2016.2018=2017^2-\left(2017^2-1\right)=1\)

6 tháng 9 2017

20182 - 20172 + 20162 - 20152 + ... + 22 - 12

= (2018+2017)(2018-2017) + (2016+2015)(2016-2015) + ... + (2+1)(2-1)

= 2018 + 2017 + 2016 + 2015 + ... + 2 + 1

= \(\dfrac{\left(1+2018\right).2018}{2}=2037171\)