K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2020

Ta có \(a^6-1=\left(a-1\right)\left(a+1\right)\left(a^2+a+1\right)\left(a^2-a+1\right)\)

\(a^2-1=\left(a-1\right)\left(a+1\right)\)

=>\(\left(a^6-1\right):\left(a^2-1\right)\)=\(\left(a^2+a+1\right)\left(a^2-a+1\right)\)

= \(a^4-a^2+1\)

27 tháng 2 2020

\(M=\frac{a^6-1}{a^2-1}=\frac{\left(a^2\right)^3-1}{\left(a-1\right)\left(a+1\right)}=\frac{\left(a^2-1\right)\left[\left(a^2\right)^2+a^2\cdot1+1^1\right]}{\left(a-1\right)\left(a+1\right)}\)

\(M=\frac{\left(a-1\right)\left(a+1\right)\left(a^4+a^2+1\right)}{\left(a-1\right)\left(a+1\right)}=a^4+a^2+1\)

HQ
Hà Quang Minh
Giáo viên
1 tháng 8 2023

Bài 1:

\(a,x^2-y^2-2x+2y=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)=\left(x-y\right)\left(x+y-2\right)\)

\(b,2x+2y-x^2-xy=2\left(x+y\right)-x\left(x+y\right)=\left(2-x\right)\left(x+y\right)\)

\(c,3a^2-6ab+3b^2-12c^2=3\left(a-b\right)^2-12c^2=3\left[\left(a-b\right)^2-4c^2\right]=3\left(a-b-2c\right)\left(a-b+2c\right)\)

\(d,x^2-25+y^2+2xy=\left(x-y\right)^2-25=\left(x-y-5\right)\left(x-y+5\right)\)

HQ
Hà Quang Minh
Giáo viên
1 tháng 8 2023

Bài 1:

\(e,a^2+2ab+b^2-ac-bc=\left(a+b\right)^2-c\left(a+b\right)=\left(a+b-c\right)\left(a+b\right)\)

\(f,x^2-2x-4y^2-4y=\left(x-1\right)^2-\left(2y+1\right)^2=\left(x-2y-2\right)\left(x+2y\right)\)

\(g,x^2y-x^3-9y+9x=x^2\left(y-x\right)-9\left(y-x\right)=\left(x-3\right)\left(x+3\right)\left(y-x\right)\)

\(h,x^2\left(x-1\right)+16\left(1-x\right)=\left(x-1\right)\left(x-4\right)\left(x+4\right)\)

18 tháng 7 2023

1) \(\left(x+\dfrac{1}{3}\right)^3=x^3+3.x^2.\dfrac{1}{3}+3.x.\left(\dfrac{1}{3}\right)^2+\left(\dfrac{1}{3}\right)^3\)

\(=x^3+x^2+\dfrac{x}{3}+\dfrac{1}{27}\)

2) \(\left(2x+y^2\right)^3=\left(2x\right)^3+3.\left(2x\right)^2.y^2+3.2x.\left(y^2\right)^2+\left(y^2\right)^3\)

\(=8x^3+12x^2y^2+6xy^4+y^6\)

3) \(\left(\dfrac{1}{2}x^2+\dfrac{1}{3}y\right)^3=\left(\dfrac{1}{2}x^2\right)^3+3.\left(\dfrac{1}{2}x^2\right)^2.\dfrac{1}{3}y+3.\dfrac{1}{2}x^2.\left(\dfrac{1}{3}y\right)^2+\left(\dfrac{1}{3}y\right)^3\)

\(=\dfrac{1}{8}x^6+\dfrac{1}{4}x^4y+\dfrac{1}{6}x^2y^2+\dfrac{1}{27}y^3\)

4) \(\left(3x^2-2y\right)^3=\left(3x^2\right)^3-3.\left(3x^2\right)^2.2y+3.3x^2.\left(2y\right)^2-\left(2y\right)^3\)

\(=27x^6-54x^4y+36x^2y^2-8y^3\)

5) \(\left(\dfrac{2}{3}x^2-\dfrac{1}{2}y\right)^3=\left(\dfrac{2}{3}x^2\right)^3-3.\left(\dfrac{2}{3}x^2\right)^2.\dfrac{1}{2}y+3.\dfrac{2}{3}x^2.\left(\dfrac{1}{2}y\right)^2-\left(\dfrac{1}{2}y\right)^3\)

\(=\dfrac{8}{27}x^6-\dfrac{1}{3}x^4y+\dfrac{1}{2}x^2y^2-\dfrac{1}{8}y^3\)

6) \(\left(2x+\dfrac{1}{2}\right)^3=\left(2x\right)^3+3.\left(2x\right)^2.\dfrac{1}{2}+3.2x.\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3\)

\(=8x^3+6x^2+\dfrac{3}{2}x+\dfrac{1}{8}\)

7) \(\left(x-3\right)^3=x^3-3.x^2.3+3.x.3^2-3^3\)

\(=x^3-9x^2+27x-27\)

18 tháng 7 2023

8) \(\left(x+1\right)\left(x^2-x+1\right)\)

\(=\left(x+1\right)\left(x^2-x.1+1^2\right)\)

\(=x^3+1^3\)

\(=x+1\)

9) \(\left(x-3\right)\left(x^2+3x+9\right)\)

\(=\left(x-3\right)\left(x^2+x.3+3^2\right)\)

\(=x^3-3^3\)

\(=x^3-27\)

10) \(\left(x-2\right)\left(x^2+2x+4\right)\)

\(=\left(x-2\right)\left(x^2+x.2+2^2\right)\)

\(=x^3-2^3\)

\(=x^3-8\)

11) \(\left(x+4\right)\left(x^2-4x+16\right)\)

\(=\left(x+4\right)\left(x^2-x.4+4^2\right)\)

\(=x^3+4^3\)

\(=x^3+64\)

12) \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)

\(=\left(x-3y\right)\left[x^2+x.3y+\left(3y\right)^2\right]\)

\(=x^3-\left(3y\right)^3\)

\(=x^3-27y^3\)

13) \(\left(x^2-\dfrac{1}{3}\right)\left(x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\right)\)

\(=\left(x^2-\dfrac{1}{3}\right)\left[\left(x^2\right)^2+x^2.\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^2\right]\)

\(=\left(x^2\right)^3-\left(\dfrac{1}{3}\right)^3\)

\(=x^6-\dfrac{1}{27}\)

14) \(\left(\dfrac{1}{3}x+2y\right)\left(\dfrac{1}{9}x^2-\dfrac{2}{3}xy+4y^2\right)\)

\(=\left(\dfrac{1}{3}x+2y\right)\left[\left(\dfrac{1}{3}x\right)^2-\dfrac{1}{3}x.2y+\left(2y\right)^2\right]\)

\(=\left(\dfrac{1}{3}x\right)^3+\left(2y\right)^3\)

\(=\dfrac{1}{27}x^3+8y^3\)

11 tháng 9 2020

\(a^4+a^2+1=a^4-a^3+a^2+\left(a^3+1\right)\)

\(=a^2\left(a^2-a+1\right)+\left(a+1\right)\left(a^2-a+1\right)\)

\(=\left(a^2-a+1\right)\left(a^2+a+1\right)\)

11 tháng 9 2020

Cách 2 lun: 

\(a^4+a^2+1=\left(a^4+2a^2+1\right)-a^2\)

\(=\left(a^2+1\right)^2-a^2=\left(a^2+a+1\right)\left(a^2-a+1\right)\)

a: Ta có: \(\left(3x-1\right)^2-\left(3x+4\right)\left(3x-4\right)=32\)

\(\Leftrightarrow9x^2-6x+1-9x^2+16=32\)

\(\Leftrightarrow-6x=15\)

hay \(x=-\dfrac{5}{2}\)

b: Ta có: \(\left(4x+3\right)^2-\left(4x-1\right)\left(4x+1\right)=-14\)

\(\Leftrightarrow16x^2+24x+9-16x^2+1=-14\)

\(\Leftrightarrow24x=-24\)

hay x=-1

24 tháng 8 2021

\(\left(2a+3\right)\left(2a+3\right)y+\left(2a+3\right)\)

\(=\left(2a+3\right)[y\left(2a+3\right)+1]\)

\(=\left(2a+3\right)\left(2ay+3y+1\right)\)

24 tháng 8 2021

\(\left(a-b\right)x+\left(b-a\right)y-\left(a-b\right)\) (Sửa đề)

\(=\left(a-b\right)x-\left(a-b\right)y-\left(a-b\right)\)

\(=\left(a-b\right)\left(x-y-1\right)\)