Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)101+100+...+3+2+1
số số hạng:(101-1):1+1=101
tổng: (101+1)*101:2=5151
Câu trả lời : A= (101-100) + (99-98) + ... + (5-4) + (3-2) +1
A= 1 + 1 + ... + 1 + 1 + 1
A= 1 x 51
A= 51
Ta thấy: 101+100+99+98+...+3+2+1 có(101-1+1=101 số)
Tổng của tử số của A là:
(101+1).101:2=5151.
Mẫu số cũng có số hạng bằng số hạng tử số,có số cặp ở mẫu là:
101:2=50(dư 1 số)(số 1).
Vậy tổng mẫu số của A là :
(101-100).50+1=51.
Vậy
A=5151:51=101
a)
C = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100 = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100 = − 1 + − 1 + ... + − 1 + − 1 = − 1.50 = − 50.
b)
B = 1 − 2 − 3 + 4 + 5 − 6 − 7 + ... + 97 − 98 − 99 + 100 = 1 − 2 + − 3 + 4 + 5 − 6 + ... + 97 − 98 + − 99 + 100 = − 1 + 1 + − 1 + ... + − 1 + 1 = − 1 + 1 + − 1 + 1 + ... + − 1 + 1 − 1 = 0 + 0 + ... + 0 − 1 = − 1.
\(=2^{100}-\left(2^{99}+2^{98}+2^{97}+...+2+1\right)\)
Đặt \(B=1+2+2^2+...+2^{98}+2^{99}\)
\(\Rightarrow2B=2+2^2+2^3+...+2^{100}\)
\(\Rightarrow B=\left(2+2^2+2^3+..+2^{100}\right)-\left(1+2+2^2+...+2^{99}\right)\)
\(\Rightarrow B=2^{100}-1\)
\(\Rightarrow2^{100}-2^{99}-2^{98}-....-2-1=2^{100}-\left(2^{100}-1\right)\)
\(=1\)
\(\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{99.100}\)
=\(9.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
=\(9.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
=\(9.\left(\frac{1}{1}-\frac{1}{100}\right)\)
=\(9.\frac{99}{100}\)
=\(\frac{891}{100}\)
\(\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{99}-\left(\frac{1}{99.98}+\frac{1}{98.97}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
đặt A = \(\frac{1}{99.98}+\frac{1}{98.97}+...+\frac{1}{3.2}+\frac{1}{2.1}\)
A = \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}\)
A = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}\)
A = \(1-\frac{1}{99}\)
A = \(\frac{98}{99}\)
Thay A vào biểu thức trên, ta được :
\(\frac{1}{99}-\frac{98}{99}=\frac{-97}{99}\)
A=2100-299-298-...-22-2-1
\(\Rightarrow\)2A=2101-2100-299-...-23-22-2
\(\Rightarrow\)2A+A=(2101-2100-299-...-23-22-2)+(2100-299-298-...-22-2-1)
\(\Rightarrow\)3A=2101+1
\(\Rightarrow\)A=\(\frac{2^{101}+1}{3}\)
Vậy A=\(\frac{2^{101}+1}{3}\).
Ta có : A = 2100 - 299 - 298 - ... - 22 - 2 - 1
=> 2A = 2101 - 2100 - 299 - ... - 23 - 22 - 2
Lấy A - 2A = (2100 - 299 - 298 - ... - 22 - 2 - 1) - (2101 - 2100 - 299 - ... - 23 - 22 - 2)
=> - A = 2100 + 2100 - 2101 - 1
=> - A = 2.2100 - 2101 - 1
=> - A = 2101 - 2101 - 1
=> - A = - 1
=> A = 1