Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(A=\frac{2020^3+1}{2020-2019}=\frac{\left(2020+1\right)\left(2020^2-2020+1\right)}{2020-2020+1}\) \(=2020+1=2021\)
b)
B = \(\frac{2020^3-1}{2020^2+2021}=\frac{\left(2020-1\right)\left(2020^2+2020+1\right)}{2020^2+2020+1}\) \(=2020-1=2019\)
Theo đề bài ta có :
\(F\left(x\right)=\left(x-1\right)\cdot Q\left(x\right)-4\) (1)
\(F\left(x\right)=\left(x+2\right)\cdot R\left(x\right)+5\) (2)
Thay \(x=1\) vào (1) ta có :
\(F\left(1\right)=-4\)
\(\Leftrightarrow1+a+b+c=-4\)
\(\Leftrightarrow a+b+c=-5\)
Thay \(x=-2\) vào (2) ta có :
\(F\left(-2\right)=5\)
\(\Leftrightarrow-8+4a-2b+c=5\)
\(\Leftrightarrow4a-2b+c=13\)
Do đó ta có : \(\hept{\begin{cases}a+b+c=-4\\4a-2b+c=13\end{cases}}\)
....
Cho a,b,c khác 0 t/m:
1/a+1/b+1/c=1/2018 và a+b+c=2018
cmr" 1/a^2019+1/b^2019+1/c^2019=1/(a^2019+b^2019+c^2019)
Ta có :
gt⇒x2−xy−(5x−5y)−x+8=0⇒(x−y)(x−5)−(x−5)=−3⇒(5−x)(x−y−1)=3gt⇒x2−xy−(5x−5y)−x+8=0⇒(x−y)(x−5)−(x−5)=−3⇒(5−x)(x−y−1)=3
Đến đây là dạng của phương trình ước số bạn chỉ cần xét ước của 33 là sẽ tìm được nghiệm nguyên của PT
\(f\left(-1\right)=-4\Rightarrow-1+a-b+c=-4\)
\(\Rightarrow a-b+c=-3\)
\(f\left(2\right)=5\Rightarrow8+4a+2b+c=5\Rightarrow4a+2b+c=-3\)
\(\Rightarrow3a+3b=0\Rightarrow a=-b\)
\(\Rightarrow a^{2019}=-b^{2019}\Rightarrow a^{2019}+b^{2019}=0\)
\(\Rightarrow A=0\)
I don't now
sorry
...................
nha
Bài này cũng ko khó, bạn chú ý nhé !!
Có: a1, a2, a3, ....., a2020 có tổng là 20192020
=> a1+ a2+ a3 +...+ a2020 chia hết cho 3
Áp dụng bổ đề x^3-x chia hết cho 3
=> a1 ^3 -a1 chia hết cho 3
a2 mũ 3 - a2 chia hết cho 3
....
a2019^3-a2019 chia hết cho 3
=> a1 mũ 3 + a2 mũ 3 + ...+a 2019 mũ 3 - (a1+a2+...+a^2019) chia hết cho 3
Có a1, a2, a3, ....., a2020 chia hết cho 3
=> a1 mũ 3 + a2 mũ 3 + ...+a 2019 mũ 3 chia hết cho 3
=> đpcm
Cm bổ đề x^3-x chia hết cho 3 nhé
=x(x-1)(x+1). Do là tích 3 số nguyên liên tiếp => Chia hết cho 3
Xin lỗi các bạn:
CMR : a13 + a23 +a33 +....+ a20203 chia hết cho 3
ewferwfwfxfryg y