Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = (154 - 1)(154 + 1) - 38 . 58
= 158 - 1 - (3.5)8
= 158 - 1 - 158 = -1
B=(154 -1).(154+1)-38.58 =158-1-(3.5)8=158-1-158 =-1
\(\left(15^4-1\right)\left(15^4+1\right)-3^8.5^8\)
= \(15^8-1-3^8.5^8\)
= \(\left(3.5\right)^8-1-3^8.5^8\)
=\(3^8.5^8-1-3^8.5^8\)
=\(-1\)
B = ( 154 - 1)( 154 + 1) - 38.58
B = 158- 1 - 158
B = -1
A: \(135^2+94\cdot153+47^2=135^2\cdot2\cdot47+153\cdot47\)
\(=47\left(36450+153\right)=36603\cdot47=1720341\)
B: \(126^2-152\cdot126+5776=126^2-2\cdot126\cdot76+76^2=\left(126-76\right)^2=50^2=2500\)
C: \(3^8\cdot5^8-\left(15^4-1\right)\left(15^4+1\right)=15^8-\left(15^8-1\right)=15^8-15^8+1=1\)
Tính nhanh:
a)
153^2 + 94 * 153 + 47^2
= 153 * (153 + 94) + 47^2
= 153 * 247 + 47^2
= 153 * (200 + 47) + 47^2
= 153 * 200 + 153 * 47 + 47^2
= 153 * 200 + 47 * (153 + 47)
= 153 * 200 + 47 * 200
= 200 * (153 + 47)
= 200 * 200
= 40000
b)126^2 - 152.126 + 5776
= 126 . 126 - 152.126 +126. 2888/63
= 126 . ( 126 - 152 + 2888/63)
= 126 . 1250/63
= 2500
Câu c bn tự làm nha
a) \(153^2+94.153+47^2=153^2+2.47.153+47^2\)
\(=\left(153+47\right)^2=200^2=40000\)
b) \(126^2-152.126+5776=126^2-2.76.126+76^2\)
\(=\left(126-76\right)^2=50^2=2500\)
c) \(3^8.5^8-\left(15^4-1\right)\left(15^4+1\right)=15^8-\left[\left(15^4\right)^2-1\right]\)
\(=15^8-\left(15^8-1\right)=15^8-15^8+1=1\)
\(3^8\cdot5^8-\left(15^4-1\right)\left(15^4+1\right)\\ =15^8-(15^8-1)\\ =15^8-15^8+1\\ =1\)
\(3^8.5^8-\left(15^4-1\right)\left(15^4+1\right)\)
\(=15^8-\left(15^8-1\right)\)
\(=15^8-15^8+1=1\)
\(3^8.5^8-\left(15^4-1\right)\left(15^4+1\right)\)
\(=15^8-\left(15^8-1\right)\)
\(=15^8-15^8+1=1\)
\(3^4\cdot5^4-\left(15^2+1\right)\left(15^2-1\right)\)
= \(\left(3\cdot5\right)^4-\left[\left(15^2\right)^2-1\right]\)
= \(15^4-15^4+1\)
= 1
Nhớ nếu đúng nhé
Bài 1 :
a ) Ta có :
\(3^4.5^4-\left(15^2+1\right)\left(15^2-1\right)\)
\(=15^4-\left(15^4-1\right)\)
\(=15^4-15^4+1\)
\(=1\)
b ) Ta có :
\(x=11\Rightarrow x+1=12\)
Thay \(x+1=12\) vào biểu thức ta được :
\(x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+111\)
\(=x^4-x^4-x^3+x^3-x^2+x^2-x+111\)
\(=111-x\)
Thay \(x=11\) vào biểu thức vừa rút gọn ta được :
\(111-11=100\)
\(a,3^4.5^4-\left(15^2+1\right)\left(15^2-1\right)\)
\(=\left(3.5\right)^4-\left(15^4-1\right)\)
\(=15^4-15^4+1\)
\(=1\)
Bài 2:
\(a,\left(6x+1\right)^2+\left(6x-1\right)^2-2\left(1+6x\right)\left(6x-1\right)\)
\(=\left(6x+1\right)^2-2.\left(6x+1\right)\left(6x-1\right)+\left(6x-1\right)^2\)
\(=\left(6x+1-6x+1\right)^2\)
\(=2^2=4\)
\(b,3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1\)