Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.12}+...+\frac{3}{93.96}+\frac{3}{96.99}\)
\(A=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{93}-\frac{1}{96}+\frac{1}{96}-\frac{1}{99}\)
\(A=1-\frac{1}{99}=\frac{98}{99}\)
Vậy A=\(\frac{98}{99}\)
\(B=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{95.98}\)
\(3B=\)\(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{95.98}\)
\(3B=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{98}\)
\(3B=\frac{1}{2}-\frac{1}{98}=\frac{24}{49}\)
\(B=\frac{24}{49}:3=\frac{8}{49}\)
Vậy B=\(\frac{8}{49}\)
Dấu "." là dấu nhân.
_Học tốt_
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\)
\(=\frac{1}{2}-\frac{1}{14}\)
\(=\frac{7}{14}-\frac{1}{14}\)
\(=\frac{6}{14}\)
\(=\frac{3}{7}\)
3/2x5 + 3/5x8 + 3/8x11 + 3/11x14
= 3/2 - 3/5 + 3/5 - 3/8 + 3/8 - 3/11 + 3/11 - 3/14
= 3/2 - 3/14
= 21/14 - 3/14
= 18/14
= 9/5
= 5-2/2x5+8-5/5x8+11-8/8x11+14-11/11x14
=(1/2-1/5)+(1/5-1/8)+(1/8-1/11)+(1/11-1/14)
=(1/2+1/5+1/8+1/11)-(1/5+1/8+1/11+1/14)
=1/2-1/14
=3/7
Vậy B=3/7
\(\frac{3}{2\times5}+\frac{2}{5\times8}+\frac{3}{8\times11}+...+\frac{3}{602\times605}\)
\(=\frac{5-2}{2\times5}+\frac{8-5}{5\times8}+\frac{11-8}{8\times11}+...+\frac{605-602}{602\times605}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{602}-\frac{1}{605}\)
\(=\frac{1}{2}-\frac{1}{605}=\frac{603}{1210}\)
\(\frac{4}{3\times7}+\frac{5}{7\times12}+\frac{1}{12\times13}+\frac{2}{13\times15}\)
\(=\frac{7-4}{3\times7}+\frac{12-7}{7\times12}+\frac{13-12}{12\times13}+\frac{15-13}{13\times15}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\)
\(=\frac{1}{3}-\frac{1}{15}=\frac{4}{15}\)
d ( 1-1/2)x(1-1/3)x(1-1/4)x......x(1-1/2018)
= 1/2x2/3x3/4x...x2017/2018
=\(\frac{1x2x3x....x2017}{2x3x4x....x2018}\)
= \(\frac{1}{2018}\)
e , 1+4+7+...+100
= dãy có số số hạng là
(100-1):3+1=34 ( số số hạng)
tổng là : (100+1 ) x 34 : 2 =1717
=>1717
\(\frac{3}{2\times5}+\frac{3}{5\times8}+\frac{3}{8\times11}+\frac{3}{11\times14}\)
\(=\frac{5-2}{2\times5}+\frac{8-5}{5\times8}+\frac{11-8}{8\times11}+\frac{14-11}{11\times14}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\)
\(=\frac{1}{2}-\frac{1}{14}=\frac{7}{14}-\frac{1}{14}=\frac{6}{14}=\frac{3}{7}\)
$\frac{2}{5\times 8}+\frac{2}{8\times 11}+\frac{2}{11\times 14}+...+\frac{2}{95\times 98}$
$=\left(\frac{3}{5\times 8}+\frac{3}{8\times 11}+\frac{3}{11\times 14}+...+\frac{3}{95\times 98}\right)\times \frac{2}{3}$
$=\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{14}+...+\frac{1}{95}-\frac{1}{98}\right)\times \frac{2}{3}$
$=\left(\frac{1}{5}-\frac{1}{98}\right)\times \frac{2}{3}$
$=\frac{93}{490}\times \frac{2}{3}$
$=\frac{93\times 2}{490\times 3}$
$=\frac{31\times 1}{245\times 1}$
$=\frac{31}{245}$
Ta có : \(S=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}\)
\(\Rightarrow3S=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}\)
\(\Rightarrow3S=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\)
\(\Rightarrow3S=\frac{1}{2}-\frac{1}{14}=\frac{3}{7}\)
\(\Rightarrow S=\frac{3}{7}.\frac{1}{3}=\frac{1}{7}\)
3S= 1/2 - 1/5 + 1/5 - 1/8 + ... + 1/11 - 1/14
3S= 1/2 - 1/14
S= 3/7 / 3
S= 1/7
\(\dfrac{1}{3}\times\left(\dfrac{3}{2\times5}+\dfrac{3}{5\times8}+\dfrac{3}{8\times11}+...+\dfrac{3}{92\times95}+\dfrac{3}{95\times98}\right)\\ =\dfrac{1}{3}\times\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{92}-\dfrac{1}{95}+\dfrac{1}{95}-\dfrac{1}{98}\right)\\ =\dfrac{1}{3}\times\left(\dfrac{1}{2}-\dfrac{1}{98}\right)\\ =\dfrac{1}{3}\times\left(\dfrac{49}{98}-\dfrac{1}{98}\right)\\ =\dfrac{1}{3}\times\dfrac{24}{49}\\ =\dfrac{8}{49}\)