Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{11}\right)=\frac{1}{2}.\frac{10}{11}=\frac{5}{11}\)
\(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\)
\(=1-\frac{1}{9}=\frac{8}{9}\)
\(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\)
\(=1+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)-\frac{1}{9}\)
\(=1-\frac{1}{9}=\frac{8}{9}\)
~ Hok tốt ~
Đặt :
\(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(\Rightarrow2A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(\Rightarrow2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(\Rightarrow2A=\frac{1}{3}-\frac{1}{11}\)
\(\Rightarrow2A=\frac{3}{11}\)
\(\Rightarrow A=\frac{3}{22}\)
\(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.+\frac{1}{101}-\frac{1}{103}\right)\)
\(\frac{1}{2}\left(1-\frac{1}{103}\right)=\frac{1}{2}\cdot\frac{100}{103}=\frac{50}{103}\)
xong r đó
Ta có:
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{101.103}\)
\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{101.103}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{101}-\frac{1}{103}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{103}\right)=\frac{50}{103}\)
B1:Tính nhanh
1/3+1/6+1/12+1/24+1/48+1/96=?
Nhớ viết cách tính ra nhé
Ai làm nhanh nhất thì mình tk cho
B = 1/3 + 1/6 + 1/12 + 1/24 + 1/48 + 1/96
2B = 2(13+16+112+124+148+196)=23+13+16+112+124+148
B = 2B - B
= (23+13+16+112+124+148)−(13+16+112+124+148+196)
= (23+13+16+112+124+148)−13−16−112−124−148−196
= 23−196=21/32
A = \(\dfrac{2}{1\times3}\) + \(\dfrac{2}{3\times5}\) + \(\dfrac{2}{5\times7}\) + \(\dfrac{2}{7\times9}\)
A = \(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}\) + \(\dfrac{1}{7}-\dfrac{1}{9}\)
A = \(\dfrac{1}{1}-\dfrac{1}{9}\)
A = \(\dfrac{8}{9}\)
B = \(\dfrac{1}{3}+\dfrac{1}{15}\) + \(\dfrac{1}{35}+\) \(\dfrac{1}{63}\) + ... + \(\dfrac{1}{195}\)
B = \(\dfrac{1}{1\times3}\) + \(\dfrac{1}{3\times5}\) + \(\dfrac{1}{5\times7}\) + ...+ \(\dfrac{1}{13\times15}\)
B = \(\dfrac{1}{2}\) x (\(\dfrac{2}{1\times3}\) + \(\dfrac{2}{3\times5}\) + \(\dfrac{2}{5\times7}\) + ..+ \(\dfrac{1}{13}\) - \(\dfrac{1}{15}\))
B = \(\dfrac{1}{2}\) x (\(\dfrac{1}{1}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}-\dfrac{1}{5}\) + ...+\(\dfrac{1}{13}-\dfrac{1}{15}\))
B = \(\dfrac{1}{2}\) x (\(\dfrac{1}{1}-\dfrac{1}{15}\))
B = \(\dfrac{1}{2}\) x \(\dfrac{14}{15}\)
B = \(\dfrac{7}{15}\)
Tổng của cả 3 số là: 210 + 100 = 310
Trung bình cộng của 3 số đó là: 310 : 3 = 310/3
\(\frac{2009\times2008-1}{2007\times2009+2008}\)
\(=\) \(\frac{4034071}{4034071}\)
\(=\) \(1\)
Đặt Tổng trên là A
A = 1/1.3 + 1/3.5 + 1/5.7 + .... + 1/2005.2007
2. A = 2 . ( 1/1.3 + 1/3.5 + 1/5.7 + .... + 1/2005.2007 )
2A = 2/1.3 + 2/3.5 + 2/5.7 + ..... + 2/2005.2007
2A = 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ..... + 1/2005 - 1/2007
2A = 1 - 1/2007
2A = 2006/2007
A = 2006/2007 : 2
A = 2006/4014
- Hok Tot -
\(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+....+\dfrac{1}{2005\times2007}\)
= \(\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2005}-\dfrac{1}{2007}\right)\)
= \(\dfrac{1}{2}\times\left(\dfrac{1}{1}-\dfrac{1}{2007}\right)\)
= \(\dfrac{1}{2}\times\dfrac{2006}{2007}\)
= \(\dfrac{1003}{2007}\)