K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2021

sai đề

\(\frac{1}{1x2} +(\frac{2}{3x5}+\frac{2}{5x7}+\frac{2}{7x9} +\frac{2}{9x11})\)

\(=\frac{1}{1x2} + (\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11})\)

\(=\frac{1}{1x2}+(\frac{1}{3}-\frac{1}{11})\)

\(=\frac{1}{1x2} +\frac{10}{33}\)

\(=\frac{1}{2} + \frac{10}{33} = \frac{33}{66}+\frac{20}{66}\)

\(=\frac{53}{66}\)

11 tháng 6 2018

  \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}+\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\)\(...+\frac{2}{8.9}+\frac{2}{9.10}\)

Đặt \(A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\)

      \(B=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{8.9}+\frac{2}{9.10}\)

              Ta có:

\(A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\)

\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\)

\(A=\frac{1}{3}-\frac{1}{15}\)

\(A=\frac{4}{15}\)

    \(B=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{8.9}+\frac{2}{9.10}\)

    \(B=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}+\frac{1}{9.10}\right)\)

     \(B=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)

    \(B=2\left(1-\frac{1}{10}\right)\)

    \(B=2.\frac{9}{10}\)

    \(B=\frac{9}{5}\)

\(\Rightarrow A+B=\frac{4}{15}+\frac{9}{5}\)

                   \(=\frac{31}{15}\)

   Vậy biểu thức trên có giá trị là \(\frac{31}{15}\)

 

=2/5-2/7+ 2/7-2/9+2/9-2/11+2/11-2/13+2/13-2/15
=2/5-(2/7-2/7)-(2/9-2/9)-(2/11-2/11)-(2/13-2/13)-2/15

=2/5-0-0-0-0-2/15

=2/5-2/15

4/15

29 tháng 6 2017

\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}+\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{9.10}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}+2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(=\frac{1}{3}-\frac{1}{15}+2\left(1-\frac{1}{10}\right)\)

\(=\frac{4}{15}+\frac{9}{5}\)

\(=\frac{31}{15}\)

15 tháng 9 2020

              Bài làm :

Ta có :

\(\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{13\times15}+\frac{2}{1\times2}+\frac{2}{2\times3}+...+\frac{2}{9\times10}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}+2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(=\frac{1}{3}-\frac{1}{15}+2\left(1-\frac{1}{10}\right)\)

\(=\frac{31}{15}\)

27 tháng 10 2020

sửa đề câu a  và câu b  nhá  , mik nghĩ đề như này :

  \(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{213\cdot215}\)

 \(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{213}-\frac{1}{215}\)

\(\frac{1}{1}-\frac{1}{215}\)

\(=\frac{214}{215}\)

b, đặt \(A=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{213\cdot215}\)

    \(A\cdot2=\frac{2}{1\cdot3}+\frac{2}{3.5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{213\cdot215}\)

\(A\cdot2=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{213}-\frac{1}{215}\)

\(A\cdot2=\frac{1}{1}-\frac{1}{215}\)

\(A\cdot2=\frac{214}{215}\)

\(A=\frac{214}{215}:2\)

\(A=\frac{107}{215}\)

27 tháng 10 2020

@ミ★Ŧɦươйǥ★彡 cảm ơn bạn nhiều

10 tháng 6 2017

Ta có : \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{11.13}\)

\(=\frac{1}{3}+\frac{1}{5}-\frac{1}{5}+......+\frac{1}{11}-\frac{1}{13}\)

\(=\frac{1}{3}-\frac{1}{13}\)

\(=\frac{10}{39}\)

10 tháng 6 2017

\(\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{11\times13}\)

\(=\frac{1}{3\times5}+\frac{1}{5\times7}+...+\frac{1}{11\times13}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\)

\(=\frac{1}{3}-\frac{1}{13}=\frac{10}{39}\)

2 tháng 11 2019

\(=2.\left(\frac{1}{1.3}+\frac{1}{3.5}+..+\frac{1}{9.11}\right)\)

\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...-\frac{1}{11}\right)\)

\(=2.\left(1-\frac{1}{11}\right)\)

\(=2.\left(\frac{11}{11}-\frac{1}{11}\right)\)

\(=2.\frac{10}{11}\)

\(=\frac{20}{11}\)

5 tháng 8 2018

\(=\frac{1}{3.5}+\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{113.115}\right)\)

\(=\frac{1}{15}+\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{113}-\frac{1}{115}\right)\)

\(=\frac{1}{15}+\frac{1}{3}-\frac{1}{115}=\frac{9}{23}\)

31 tháng 10 2023

\(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}+\dfrac{2}{9\times11}\)

\(=2\times\dfrac{1}{2}\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\right)\)

\(=1-\dfrac{1}{11}\)

\(=\dfrac{11}{11}-\dfrac{1}{11}\)

\(=\dfrac{10}{11}\)

11 tháng 3 2023

A = \(\dfrac{4}{1\times3}\) - \(\dfrac{8}{3\times5}\) + \(\dfrac{12}{5\times7}\) - \(\dfrac{16}{7\times9}\) + \(\dfrac{20}{9\times11}\) - \(\dfrac{24}{11\times13}\)

A = ( \(\dfrac{1}{1}+\dfrac{1}{3}\)) - ( \(\dfrac{1}{3}\) + \(\dfrac{1}{5}\)) + (\(\dfrac{1}{5}\)\(\dfrac{1}{7}\)) - ( \(\dfrac{1}{7}\) + \(\dfrac{1}{9}\)) +( \(\dfrac{1}{9}\)\(\dfrac{1}{11}\)) - (\(\dfrac{1}{11}\)+\(\dfrac{1}{13}\))

A = \(\dfrac{1}{1}+\dfrac{1}{3}\) - \(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}+\dfrac{1}{7}\) - \(\dfrac{1}{7}\) - \(\dfrac{1}{9}\) + \(\dfrac{1}{9}\) + \(\dfrac{1}{11}\) - \(\dfrac{1}{11}\) - \(\dfrac{1}{13}\)

A = \(\dfrac{1}{1}\) - \(\dfrac{1}{13}\)

A = \(\dfrac{12}{13}\)

23 tháng 10 2024

Om op