K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2023

A = \(\dfrac{1}{1+2}\) + \(\dfrac{1}{1+2+3}\) + \(\dfrac{1}{1+2+3+4}\)+...+ \(\dfrac{1}{1+2+3+...+2020}\)

Ta có S = 1 + 2 + ...+ n 

Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1

Số số hạng của dãy số trên là: (n-1): 1 + 1 = n

Áp dụng công thức tính tổng của dãy số cách đều ta có tổng trên là:

S = (n+1)\(\times\) n : 2

Áp dụng công thức tính tổng S trên vào biểu thức A ta có:

A = \(\dfrac{1}{\left(2+1\right)\times2:2}\)+\(\dfrac{1}{\left(3+1\right)\times3:2}\)+...+\(\dfrac{1}{\left(2020+1\right)\times2020:2}\)

A =  \(\dfrac{1}{2\times3:2}\)  + \(\dfrac{1}{3\times4:2}\)\(\dfrac{1}{4\times5:2}\)+...+\(\dfrac{1}{2020\times2021:2}\)

A = \(\dfrac{2}{2\times3}\) + \(\dfrac{2}{3\times4}\) + \(\dfrac{2}{4\times5}\)+...+ \(\dfrac{2}{2020\times2021}\)

A = \(2\) \(\times\)\(\dfrac{1}{2\times3}\) + \(\dfrac{1}{3\times4}\)\(\dfrac{1}{4\times5}\)+...+ \(\dfrac{1}{2020\times2021}\))

A = 2 \(\times\)\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)+\(\dfrac{1}{4}\) - \(\dfrac{1}{5}\)+...+ \(\dfrac{1}{2020}\)\(\dfrac{1}{2021}\))

A = 2\(\times\)\(\dfrac{1}{2}\) - \(\dfrac{1}{2021}\))

A = 1 - \(\dfrac{2}{2021}\)

A = \(\dfrac{2021-2}{2021}\)

A = \(\dfrac{2019}{2021}\)

4 tháng 6 2019

\(\frac{3}{1}+\frac{3}{1+2}+\frac{3}{1+2+3}+...+\frac{3}{1+2+...+100}\)

\(=3\left(\frac{1}{\frac{1\cdot2}{2}}+\frac{1}{\frac{2\cdot3}{2}}+\frac{1}{\frac{3\cdot4}{2}}+...+\frac{1}{\frac{100\cdot101}{2}}\right)\)

\(=3\left(\frac{2}{1\cdot2}+\frac{2}{2\cdot3}+...+\frac{2}{100\cdot101}\right)\)

\(=6\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{100\cdot101}\right)\)

\(=6\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{100}-\frac{1}{101}\right)\)

\(=6\left(1-\frac{1}{101}\right)=6-\frac{6}{101}=\frac{606-6}{101}=\frac{600}{101}\)

27 tháng 1 2022

help me !!!!!!!

\(=2021\cdot2\cdot\left(1+\dfrac{1}{2}:\dfrac{3}{2}-\dfrac{4}{3}\right)=4042\cdot\left(1+\dfrac{1}{3}-\dfrac{4}{3}\right)=0\)

7 tháng 6 2018

Bài 3: 

= 1- 1/2 + 1/2 -1/3 +...+ 1/98 -1/99

= 1- 1/99

= 98/99

Bài 4:

= 1/2*3 + 1/3*4 + 1/4*5 +...+  1/10*11

= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 +...+ 1/10 - 1/11

= 1/2 - 1/11= 9/22

25 tháng 3 2017

74 nha

ai thương lấy mình với mình đang cần điểm hỏi đáp

25 tháng 3 2017

= 74 nha bạn 

18 tháng 8 2020

\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+50}\)

\(=\frac{1}{2\times\left(2+1\right):2}+\frac{1}{3\times\left(3+1\right):2}+\frac{1}{4\times\left(4+1\right):2}+...+\frac{1}{50\times\left(50+1\right):2}\)

\(=\frac{1}{2}\times\frac{1}{2\times3}+\frac{1}{2}\times\frac{1}{3\times4}+\frac{1}{2}\times\frac{1}{4\times5}+...+\frac{1}{2}\times\frac{1}{49\times50}\)

\(=\frac{1}{2}\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{49\times50}\right)\)

\(=\frac{1}{2}\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\right)\)

\(=\frac{1}{2}\times\left(\frac{1}{2}-\frac{1}{50}\right)=\frac{1}{2}\times\frac{12}{25}=\frac{6}{25}\)

20 tháng 8 2020

\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+..+50}\)

\(=\frac{1}{2.\left(2+1\right):2}+\frac{1}{3.\left(3+1\right):2}+\frac{1}{4.\left(4+1\right):2}+..+\frac{1}{50.\left(50+1\right):2}\)

\(=\frac{1}{2}.\frac{1}{2.3}+\frac{1}{2}.\frac{1}{3.4}+\frac{1}{2}.\frac{1}{4.5}+..+\frac{1}{2}.\frac{1}{49.50}\)

\(=\frac{1}{2}.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+..+\frac{1}{49.50}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{50}\right)=\frac{1}{2}.\frac{12}{25}=\frac{6}{25}\)