Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(19^2=\left(20-1\right)^2=20^2-2.20.1+1^2=400-40+1=361\)
\(28^2=\left(30-2\right)^2=30^2-2.30.2+2^2=900-120+4=784\)
\(81^2=\left(80+1\right)^2=80^2+2.80.1+1^2=6400+160+1=6561\)
\(91^2=\left(90+1\right)^2=90^2+2.90.1+1^2=8100+180+1=8281\)
\(19.21=\left(20-1\right).\left(20+1\right)=20^2-1^2=400-1=399\)
\(29.31=\left(30-1\right).\left(30+1\right)=30^2-1^2=900-1=899\)
\(39.41=\left(40-1\right).\left(40+1\right)=40^2-1^1=1600-1=1599\)
\(29^2-8^2=\left(29-8\right).\left(29+8\right)=777\)
- 2 phần còn lại bạn cứ làm tương tự :) Vì mk bận nên chỉ giúp đc đến đây thoy <: Chúc bạn học tốt =)
a) 192=(20-1)2=202-2.20.1+12=400-40+1=361;
282=(30-2)2=302-2.30.2+22=900-120+4=784;
812=(80+1)2=802+2.80.1+12=6400+160+1=6561;
912=(90+1)2=902+2.90.1+12=8100+180+1=8281;
b) 19.21=(20-1)(20+1)=202-1=400-1=399;
29.31=(30-1)(30+1)=302-1=900-1=899;
39.41=(40-1)(40+1)=402-1=1600-1=1599
c) 292-82=(29-8)(29+8)=21.37=37(20+1)=740+37=777
562-462=(56-46)(56+46)=10.100=1000
672-562=(67-56)(67+56)=11.123=123(10+1)=1230+123=1353
a)
19^2=(20−1)^2=20^2−2.20.1+1^2=400−40+1=361
28^2=(30−2)^2=30^2−2.30.2+2^2=900−120+4=784
81^2=(80+1)^2=80^2+2.80.1+1^2=6400+160+1=6561
91^2=(90+1)^2=90^2+2.90.1+1^2=8100+180+1=8281
a) \(A=\left(x^2-10x+25\right)\)\(-28\)
\(A=\left(x-5\right)^2-28\)\(>=\)-28
MinA = -28 <=> x-5=0 <=> x=5
b)\(B=-\left(x^2+2x+1\right)+6\)
\(B=-\left(x+1\right)^2+6\)\(< =\)6
MaxB = 6 <=> x+1=0 <=> x=-1
c)\(C=-5\left(x^2-\frac{6}{5}x+\frac{9}{25}\right)-\frac{26}{5}\)
\(C=-5\left(x-\frac{3}{5}\right)^2-\frac{26}{5}\)\(< =-\frac{26}{5}\)
MaxC = \(-\frac{26}{5}\)<=> \(x-\frac{3}{5}=0\)<=> x=\(\frac{3}{5}\)
d)\(D=-3\left(x^2+\frac{1}{3}x+\frac{1}{36}\right)+\frac{61}{12}\)
\(D=-3\left(x+\frac{1}{6}\right)^2+\frac{61}{12}\)\(< =\frac{61}{12}\)
MacD = \(\frac{61}{12}\)<=> \(x+\frac{1}{6}=0\)<=> \(x=\frac{-1}{6}\)
Đúng thì nhớ tích cho minh nha
Với [x>1x<−1] ta có: x^3< x^3+2x^2+3x+2<(x+1)^3⇒x^3<y^3<(x+1)^3 (không xảy ra)
Từ đây suy ra −1≤ x ≤1
Mà x∈Z⇒x∈{−1;0;1}
∙∙ Với x=−1⇒y=0
∙∙ Với x=0⇒y= căn bậc 3 của 2 (không thỏa mãn)
∙∙ Với x=1⇒y=2
Vậy phương trình có 2 nghiệm nguyên (x;y) là (−1;0) và (1;2)
\(a,\left(2x+y+3\right)^2=4x^2+y^2+9+4xy+12x+6y\)
\(b,\left(x-2y+1\right)^2=x^2+4y^2+1-4xy+2x-4y\)
\(c,\left(x^2-2xy^2-3\right)^2=x^4+2x^2y^4+9-4x^3y^2-6x^2+12xy^2\)
1.
$27x^2-1=(\sqrt{27}x)^2-1^2=(\sqrt{27}x-1)(\sqrt{27}x+1)$
2.
a)
$x^3-9x^2+27x-27=-8$
$\Leftrightarrow x^3-3.3x^2+3.3^2.x-3^3=-8$
$\Leftrightarrow (x-3)^3=-8=(-2)^3$
$\Rightarrow x-3=-2$
$\Leftrightarrow x=1$
b)
$64x^3+48x^2+12x+1=27$
$\Leftrightarrow (4x)^3+3.(4x)^2.1+3.4x.1^2+1^3=27$
$\Leftrightarrow (4x+1)^3=3^3$
$\Rightarrow 4x+1=3$
$\Leftrightarrow x=\frac{1}{2}$
mk sợ phần c ko phải là tính nhanh.
a)
\(19^2=\left(20-1\right)^2=20^2-2.20.1+1^2=400-40+1=361\)
\(28^2=\left(30-2\right)^2=30^2-2.30.2+2^2=900-120+4=784\)
\(81^2=\left(80+1\right)^2=80^2+2.80.1+1^2=6400+160+1=6561\)
\(91^2=\left(90+1\right)^2=90^2+2.90.1+1^2=8100+180+1=8281\)
b)
\(19.21=\left(20-1\right)\left(20+1\right)=20^2-1^2=400-1=399\)
\(29.31=\left(30-1\right)\left(30+1\right)=30^2-1^2=900-1=899\)
\(39.41=\left(40-1\right)\left(40+1\right)=40^2-1^2=1600-1=1599\)
P/s: Lần sau cậu nên chia nhỏ ra đăng nhé!