K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0a) Giải phương trình với m = -2b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1c) Tìm các giá trị của m để phương trình trên có nghiệm kép2.Xác định m để mỗi cặp phương trình sau có nghiệm chunga) x2 + mx +2 = 0 và x2 +2x + m = 0b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 03. Cho phương trình (m+1)x2 +4mx +4m - 1 =0a) Giải phương trình với m...
Đọc tiếp

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0

a) Giải phương trình với m = -2

b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1

c) Tìm các giá trị của m để phương trình trên có nghiệm kép

2.Xác định m để mỗi cặp phương trình sau có nghiệm chung

a) x2 + mx +2 = 0 và x2 +2x + m = 0

b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 0

3. Cho phương trình (m+1)x2 +4mx +4m - 1 =0

a) Giải phương trình với m = - 2

b) Với giá trị nào của m thì phương trình có hai nghiệm phân biệt

c) Tìm m để phương trình có hai nghiệm thỏa mãn điều kiện x1 = - 2x2

4. Cho phương trình x2 - 2(m+4)x +m2 -8 =0

a) Tìm m để biểu thức A= x12 + x22 - x1 - x2 đạt giá trị nhỏ nhất

b) Tìm m để biểu thức B= x1 + x2 -3x1x2 đạt giá trị lớn nhất

c) Tìm m để biểu thức C= x12 + x22 - x1x2 đạt giá trị lớn nhất

Mong mọi người giúp mình, mình thực sự rất cần. Cảm ơn trước ạ. Làm được bài nào thì cmt ngay giúp mình ạ.

1
18 tháng 2 2021

Bài 1 : a, Thay m = -2 vào phương trình ta được : 

\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)

Ta có : \(\Delta=64-60=4>0\)

Vậy phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)

b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)

\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)

\(1+2\left(m-2\right)+m^2-3m+5=0\)

\(6+2m-4+m^2-3m=0\)

\(2-m+m^2=0\)( giải delta nhé )

\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)

Vậy phương trình vô nghiệm 

c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )

22 tháng 4 2020

a) Phương trình (1) có nghiệm x=-2 khi:

(-2)2-(m+5).(-2)-m+6=0

<=> 4+2m+10-m+6=0

<=> m=-20

b) \(\Delta=\left(m+5\right)^2-4\left(-m+6\right)=m^2+10m+25+4m-24=m^2+14m+1\)

Phương trình (1) có nghiệm khi \(\Delta=m^2+14m+1\ge0\)(*)

Với điều kiện trên, áp dụng định lý Vi-et ta có:

\(S=x_1+x_2=m+5;P=x_1\cdot x_2=-m+6\)

Khi đó:

\(x_1^2x_2+x_1x_2^2=24\)<=> \(x_1x_2\left(x_1+x_2\right)=24\)

<=> (-m+6)(m+5)=24

<=> m2-m-6=0

<=> m=3; m=-2

Giá trị m=3 (tm), m=-2 (ktm) điều kiện (*)

Vậy m=3 là giá trị cần tìm

2 tháng 7 2021
Câu trả lời bằng hình

Bài tập Tất cả

2 tháng 7 2021

Bạn tham khảo nhé !

x2 + mx - 1 = 0 có  Δ= m2 - 4 ( x - 1 ) = m2 + 4 \(\ge\)\(\forall\)\(\in\)\(\Rightarrow\)phương trình luôn có 2 nghiệm phân biệt

Theo định lý Viete, ta có: \(\hept{\begin{cases}x_1+x_2=-m\\x_1x_2=-1\end{cases}}\)

Theo giả thiết: x21 + x22  = 5x1x2 \(\Leftrightarrow\)( x1 + x2 ) 2 = 7x1x2

\(\Rightarrow\)( - m ) 2 = 7 ( - 1 ) \(\Rightarrow\)m2 = - 7 \(\Leftrightarrow\)\(\in\)\(\varnothing\)

Vậy không tồn tại m thõa ycbt

21 tháng 4 2020

a) \(x^3_1+x_2^3=\left(x_1+x_2\right)\left(x^2_1-x_1x_2+x^2_2\right)=\left(x_1+x_2\right)\left(x^2_1+2x_1x_2-3x_1x_2+x^2_2\right).\)(1)

Áp dụng Đen-ta: \(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=1\end{cases}}\)

\(\left(x_1+x_2\right)^2=25.\)

<=> \(x^2_1+x_2^2+2x_1x_2=25.\)

(1) 5.(25-3)=5.22=110

Câu 2:

\(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=1\end{cases}}\)

ta có:\(x^2_1+x^2_2+2x_1x_2=25.\Rightarrow x^2_1+x^2_2=23\Rightarrow\left(x^2_1+x^2_2\right)^2=529.\)

\(\Leftrightarrow x^4_1+x^4_2+2x^2_1x^2_2=529.\)

\(\Rightarrow x^4_1+x^4_2=527\)

học tốt

25 tháng 7 2015

câu 1:

Áp dụng hệ thức Vi-ét ta đc: \(x_1+x_2=2m+1;x_1x_2=m^2-3\)

có : \(x_1^2+x_2^2-\left(x_1+x_2\right)=8\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=8\Rightarrow\left(2m+1\right)^2-2.\left(m^2-3\right)-\left(2m+1\right)=8\)

\(\Rightarrow2m^2+4m+1-2m^2+6-2m-1=8\Rightarrow2m=2\Rightarrow m=1\)

câu 2 mk k bik lm nha