Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách này hơi dài chút, nhưng nếu nghĩ ra cách hay hơn mình sẽ đề xuất nhe!
\(=\int\sin^5x.\left(2\sin x\cos x\right)^3.2xdx=16\int x.\sin^8x\cos^3xdx\)
\(\left\{{}\begin{matrix}u=x\\dv=\sin^8x.\cos^3xdx\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=dx\\v=\int\sin^8x.\cos^3xdx\end{matrix}\right.\)
\(I_1=\int\sin^8x\cos^3xdx=\int\sin^8x.\cos^2x.\cos xdx=\int\sin^8x.\left(1-\sin^2x\right)\cos xdx\)
\(t=\sin x\Rightarrow dt=\cos xdx\Rightarrow\int\sin^8x\left(1-\sin^2x\right)\cos xdx=\int(t^8-t^{10})dt=\dfrac{1}{9}t^9-\dfrac{1}{11}t^{11}=\dfrac{1}{9}\sin^9x-\dfrac{1}{11}\sin^{11}x\)
\(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=\dfrac{1}{9}\sin^9x-\dfrac{1}{11}\sin^{11}x\end{matrix}\right.\)
\(\Rightarrow\dfrac{I}{16}=x.\left(\dfrac{1}{9}\sin^9x-11\sin^{11}x\right)-\int\left(\dfrac{1}{9}\sin^9x-\dfrac{1}{11}\sin^{11}x\right)dx\)
\(I_2=\int\left(\dfrac{1}{9}\sin^9x-\dfrac{1}{11}\sin^{11}x\right)dx=\dfrac{1}{9}\int\sin^9xdx-\dfrac{1}{11}\int\sin^{11}xdx\)
À thế này là xong rồi còn gì :) Bạn tự làm nốt nhé
f(x)=4sin2x.cos2x.sinx=4(1-cos2x)cos2x.sinx=(4cos4x-4cos2x)(-sinx)
Đặt u=cosx ---> F(x)=(4/5)cos5x-(4/3)cos3x+C
c2 ;nhan vo duocx2(sinx/2 .cosx/2)=x2/2(sinx+cosx) lai nhan vo roi tung phan nhe
\(\int sin^2\dfrac{x}{2}dx=\int\left(\dfrac{1}{2}-\dfrac{1}{2}cosx\right)dx=\dfrac{1}{2}x-\dfrac{1}{2}sinx+C\)
\(\int cos^23xdx=\int\left(\dfrac{1}{2}+\dfrac{1}{2}cos6x\right)dx=\dfrac{1}{2}x+\dfrac{1}{12}sin6x+C\)
\(\int4cos^2\dfrac{x}{2}dx=\int\left(2+2cosx\right)dx=2x+2sinx+C\)