\(\frac{1}{2.3.4}+\frac{1}{3.4.5}+\frac{1}{4.5.6}+...+\frac{1}{13.14.15}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2018

\(C=\frac{1.2.3+2.3.4+3.4.5+4.5.6+5.6.7}{3.3.2.3.3.1+2.3.3.3.4.3+3.3.4.3.3.5+3.4.5.3.6.3+3.5.3.6.7.3}+\frac{8}{27}\)

\(C=\frac{1.2.3+2.3.4+3.4.5+4.5.6+5.6.7}{3^3.\left(1.2.3+2.3.4+3.4.5+4.5.6+5.6.7\right)}+\frac{8}{27}\)

\(C=\frac{1}{3^3}+\frac{8}{27}=\frac{1}{27}+\frac{8}{27}=\frac{9}{27}=\frac{1}{3}\)

Vậy C = \(\frac{1}{3}\)

14 tháng 3 2017

=1+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{2}\) -\(\frac{1}{3}\) -\(\frac{1}{4}\)+\(\frac{1}{3}\) - \(\frac{1}{4}\)-\(\frac{1}{5}\)+.....+\(\frac{1}{99}\)-\(\frac{1}{100}\)-\(\frac{1}{101}\)

=1+\(\frac{1}{101}\)

=\(\frac{102}{101}\)

14 tháng 3 2017

1/1.2.3 = 1/2 .[1/1.2 - 1 / 2.3]

1/2.3.4 = 1/2[ 1/2- 1/3 ] 

...................

1/99.100.101 = 1/2[ 1/99. 100 - 1/100.101]

=> A= 1/2 [ 1/1.2- 1/2.3 + 1/2.3 - 1/3.4 + 1/3.4 - 1/ 4.5 +.........+ 1/99 .100 - 1/100. 101]

A = 1/2 . [1/1.2 -1/100 .101]

A= 1/2 . 5049 /10100 = 5049 / 20200.

Mình nghĩ là vậy đó.

1 tháng 7 2015

 

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}\)

\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{37.38.39}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{38.39}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{1482}\right)\)

\(=\frac{1}{2}.\frac{370}{741}\)

\(=\frac{1}{2}.\frac{370}{741}\)

\(=\frac{185}{741}\)

 

 

26 tháng 7 2019

Đặt    \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{37.38.39}\)

\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{37.38.39}\)

\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{37.38}-\frac{1}{38.39}\)

\(2A=\frac{1}{1.2}-\frac{1}{38.39}=\frac{370}{741}\)

\(A=\frac{185}{741}\)

Chúc bn hc tốt <3

2 tháng 9 2015

A = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+..+\frac{1}{99.100.101}\)

A = \(\frac{1}{2}.\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+...+\frac{101-99}{99.100.101}\right)\)

A = \(\frac{1}{2}.\left(\frac{3}{1.2.3}-\frac{1}{1.2.3}+\frac{4}{2.3.4}-\frac{2}{2.3.4}+...+\frac{101}{99.100.101}-\frac{99}{99.100.101}\right)\)

A = \(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\right)\)

A = \(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{100.101}\right)\)

A = \(\frac{1}{2}.\frac{5049}{10100}\)

A = \(\frac{5049}{20200}\)

19 tháng 6 2018

\(A=\frac{5049}{20200}\)

23 tháng 11 2018

\(F=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}=\frac{n-1}{n}\)

\(\Rightarrow F=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{\left(n-1\right)}-\frac{1}{n}\)

\(\Rightarrow F=1-\frac{1}{n}=\frac{n}{n}-\frac{1}{n}=\frac{n-1}{n}\left(đpcm\right)\)

\(H=2+4+6+...+2n\)

1 tháng 7 2015

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}=\frac{1}{2}\cdot\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{37.38}-\frac{1}{38.39}\right)=\frac{1}{2}\cdot\left(\frac{1}{2}-\frac{1}{38.39}\right)=\frac{185}{741}\)

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{37.38.39}\)

\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{37.38.39}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{37.38}-\frac{1}{38.39}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{38.39}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{1482}\right)\)

\(=\frac{1}{2}\left(\frac{741}{1482}-\frac{1}{1482}\right)\)

\(=\frac{1}{2}.\frac{370}{741}\)

\(=\frac{185}{741}\).

17 tháng 10 2016

\(\frac{1}{2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{99.100.101}\)

\(=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{99.100.101}\)

\(=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{99.100.101}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{99.100}-\frac{1}{100.101}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{100.101}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{10100}\right)\)

\(=\frac{1}{2}.\frac{5049}{10100}=\frac{5049}{20200}\)

17 tháng 10 2016

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{99.100.101}\)

\(\Leftrightarrow A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\right)\)

\(\Leftrightarrow A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{100.101}\right)\)

\(\Leftrightarrow A=\frac{1}{2}.\frac{5049}{10100}=\frac{5049}{20200}\)

26 tháng 8 2018

Đặt C =\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)

\(\Rightarrow2C=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\)

             \(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

              \(=\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

\(\Rightarrow C=\left(\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\div2\)