K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2017

N=\(\dfrac{2^{10}.13+2^9+130}{2^8.104}\)

N=\(\dfrac{13312+642}{26624}\)

N=\(\dfrac{3954}{26624}\)=\(\dfrac{6977}{13312}\)

19 tháng 10 2017

ko có cách tính nhanh hơn à bạn

26 tháng 10 2017

\(N=\dfrac{3^{10}.11+3^9.15}{3^9.2^4}=\dfrac{3^9.33+3^9.15}{3^9.2^4}\)

\(=\dfrac{3^9\left(33+15\right)}{3^9.16}\)

\(=\dfrac{48}{16}=3\)

5 tháng 7 2018

\(A=\dfrac{3^{10}\cdot11+3^{10}\cdot5}{3^9\cdot2^4}=\dfrac{3^{10}\cdot\left(11+5\right)}{3^9\cdot16}=\dfrac{3^{10}\cdot16}{3^9\cdot16}=3\)

\(B=\dfrac{2^{10}\cdot13+2^{10}\cdot65}{2^8\cdot104}=\dfrac{2^{10}\cdot\left(13+65\right)}{2^8\cdot2^2\cdot26}=\dfrac{2^{10}\cdot78}{2^{10}\cdot26}=3\)

\(C=\dfrac{72^3\cdot54^2}{108^4}=\dfrac{\left(2^3\cdot3^2\right)^3\cdot\left(2\cdot3^3\right)^2}{\left(3^3\cdot2^2\right)^4}\\ =\dfrac{2^9\cdot3^6\cdot2^4\cdot3^6}{3^{12}\cdot2^8}=\dfrac{2^{13}\cdot3^{12}}{3^{12}\cdot2^8}=2^5=32\)

\(D=\dfrac{11\cdot3^{22}\cdot3^7-9^{15}}{\left(2\cdot3^{14}\right)^2}=\dfrac{11\cdot3^{29}-\left(3^2\right)^{15}}{2^2\cdot3^{28}}=\dfrac{11\cdot3^{29}-3^{30}}{2^2\cdot3^{28}}\\ =\dfrac{3^{29}\cdot\left(11-3\right)}{2^2\cdot3^{28}}=\dfrac{3^{29}\cdot8}{4\cdot3^{28}}=3\cdot2=6\)

31 tháng 1 2019

a, =\(3^4+2^5=81+32=113\)

b, =\(3.\left(4^2-2.3\right)=3.\left(16-6\right)=3.10=30\)

c, =\(\dfrac{2^{12}.3^4.3^{10}}{2^{12}.3^{12}}=\dfrac{2^{12}.3^{14}}{2^{12}.3^{12}}=3^2=9\)

d, =\(\dfrac{3^2.7^2.2.7.5^3}{5^3.7^3.2.3}=3\)

e, =\(\dfrac{3^6.5^3.2^8.5^4.2^2.3^4}{2^{10}.3^{10}.5^5}=\dfrac{3^{10}.2^{10}.5^7}{2^{10}.3^{10}.5^5}=5^2=25\)

g, =\(\dfrac{2^5.\left(2^8+1\right)}{2^2.\left(2^8+1\right)}=\dfrac{2^5}{2^2}=2^3=8\)

31 tháng 1 2019

thank

26 tháng 3 2017

\(\frac{3^{10}.11+3^{10}.5}{3^9.2^4}+\frac{2^{13}+2^5}{2^{10}+2^2}=11\)

13 tháng 6 2018

1/

a/ A = 1 + 3 + 3^2 + 3^3 + ... + 3^119

=> 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^120

=> 3A - A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^120 - (1 + 3 + 3^2 + 3^3 + ... + 3^119)

=> 2A = 3^120 - 1

=> A = (3 ^120 - 1)/2

b/ 2A + 1 = 27x

<=> 3^120 = 27x

<=> 27^40 = 27x

<=> x = 40

c/ +) A = 1 + 3 + 3^2 + 3^3 + ... + 3^119

= (1 + 3^2) + (3 + 3^3) + (3^4 + 3^6) + ...+ (3^117 + 3^119)

= 1+ 3^2 + 3(1+ 3^2) + 3^4(1 + 3^2) ...+ 3^117( 1+ 3^2)

= (1 + 3^2) (1 + 3 + 3^4+ ...+ 3^117)

= 10 * (1 + 3 + 3^4+ ...+ 3^117) \(⋮\) 5

+) A = 1 + 3 + 3^2 + 3^3 + ... + 3^119

= (1 + 3 + 3^2) + (3^3 + 3^4 + 3^5) + ...+ (3^117 + 3^118 + 3^119)

= (1 + 3 + 3^2) + 3^3 (1+ 3 + 3^2) + ...+ 3^117 (1+ 3 + 3^2)

= (1 + 3 + 3^2) (1+ 3^3 +... + 3^117)

= 13 * (1+ 3^3 +... + 3^117) \(⋮\)13

13 tháng 6 2018

2b

Câu hỏi của Raf - Toán lớp 6 - Học toán với OnlineMath

26 tháng 10 2018

a)\(A=\frac{3^{10}.11+3^{10}.5}{3^9.2^4}=\frac{3^{10}\left(11+5\right)}{3^9.2^4}=\frac{3.16}{2^4}=\frac{3.2^4}{2^4}=3\)

b)\(B=\frac{2^{10}.13+2^{10}.65}{2^8.104}=\frac{2^{10}\left(13+65\right)}{2^8.2^3.13}=\frac{2^{10}.78}{2^{11}.13}=3\)

c)\(C=\frac{4^9.36+64^4}{16^4.100}=\frac{2^{18}.2^2.3^2+2^{24}}{2^{16}.2^2.5^2}=\frac{2^{20}\left(3^2+2^4\right)}{2^{18}.5^2}=\frac{2^2.25}{25}=4\)

16 tháng 9 2017

Bài 1 :

a, ab + ba = (a*10 + b) + (b*10 + a)

               = a*(10+1) + b*(1+10)

               = a*11 + b*11 chia hết cho 11

b, abc - cba = (a*100 + b*10 + c) - (c*100 + b*10 + a)

                  = a*99 + 0b + c*(-99) chia hết cho 99

16 tháng 9 2017

VẬY CÒN BÀI 2 VÀ BÀI 3 THÌ SAO

21 tháng 4 2017

tìm x a)
\(\dfrac{7}{2}\)-\(\left(x+\dfrac{7}{10}\right)\): \(\dfrac{6}{5}\) = \(\dfrac{-5}{4}\)
\(\left(x+\dfrac{7}{10}\right)\): \(\dfrac{6}{5}\) = \(\dfrac{-5}{4}\) + \(\dfrac{7}{2}\)
\(\left(x+\dfrac{7}{10}\right)\): \(\dfrac{6}{5}\) = \(\dfrac{-5}{12}+\dfrac{7}{12}\)
\(\left(x+\dfrac{7}{10}\right)\): \(\dfrac{6}{5}\) = \(\dfrac{-12}{12}=1\)
\(x+\dfrac{7}{10}\)= 1 . \(\dfrac{6}{5}\)
*Rồi tự làm phần tt đi




20 tháng 4 2017

Mình ghi kết quả luôn nha bạn