K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2018

\(M=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{97.99}\)

\(\Rightarrow M=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\right)\)

\(\Rightarrow M=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(\Rightarrow M=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{99}\right)\)

\(\Rightarrow M=\frac{1}{2}.\frac{32}{99}\)

\(\Rightarrow M=\frac{16}{99}\)

11 tháng 5 2018

\(M=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(M=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)

\(M=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5.}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(M=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{99}\right)=\frac{16}{99}\)

11 tháng 5 2019

\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)

\(=\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+...+\left(\frac{1}{97}-\frac{1}{97}\right)-\frac{1}{99}\)

\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)

~ Hok tốt ~

\(\)

11 tháng 5 2019

Viết thành 2 . (1/3.5 + 1/5.7 + 1/7.9 + ...+ 1/97.99

15 tháng 8 2016
  • \(B=\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{93.97}\)

           \(4.B=\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{93.97}\) 

            \(4.B=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{93}-\frac{1}{97}\)

            \(4.B=1-\frac{1}{97}\)

             \(4.B=\frac{96}{97}\)

                 \(B=\frac{96}{97}:4\)

                 \(B=\frac{24}{97}\)

5 tháng 4 2016

Mk bik câu B nè!

2B = 2/3.5 + 2/5.7 + 2/7.9 +.......+2/97.99

2B = 1/3 - 1/5 + 1/5 - 1/7 +.......+ 1/97 - 1/99

2B = 1/3 - 1/99

2B = 32/99

=> B = 16/99 

5 tháng 4 2016

Bạn có chắc là đúng ko vậy

15 tháng 3 2018

\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{9\cdot11}\)

\(=\frac{1}{2}\cdot\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{9\cdot11}\right)\)

\(=\frac{1}{2}\left(\frac{3-1}{1\cdot3}+\frac{5-3}{3\cdot5}+\frac{7-5}{5\cdot7}+...+\frac{11-9}{9\cdot11}\right)\)

\(=\frac{1}{2}\left(\frac{3}{1\cdot3}-\frac{1}{1\cdot3}+\frac{5}{3\cdot5}-\frac{3}{3\cdot5}+...+\frac{7}{5\cdot7}-\frac{5}{5\cdot7}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{11}\right)\)

\(=\frac{1}{2}\cdot\frac{10}{11}\)

\(=\frac{10}{22}=\frac{5}{11}\)

15 tháng 3 2018

Ta có : 

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)

\(=\)\(\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)\)

\(=\)\(\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)

\(=\)\(\frac{1}{2}\left(1-\frac{1}{11}\right)\)

\(=\)\(\frac{1}{2}.\frac{10}{11}\)

\(=\)\(\frac{5}{11}\)

Bạn làm đúng òi 

Chúc bạn học tốt ~

20 tháng 7 2017

M=2/3.5+2/5.7+...+2/97.99

M=1/3-1/5+1/5-...+1/97-1/99

M=1/3-1/99

M=32/99

20 tháng 7 2017

\(M=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{97.99}\)

      \(=2\left(\frac{1}{3}+\frac{1}{5}-\frac{1}{5}+\frac{1}{7}-...-\frac{1}{97}+\frac{1}{99}\right)\)

        \(=2\left(\frac{1}{3}-\frac{1}{99}\right)\)

          \(=2.\frac{32}{99}\)

            \(=\frac{64}{99}\)

   \(B=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(2B=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)

\(2B=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)

\(2B=\frac{1}{3}-\frac{1}{99}=\frac{33}{99}-\frac{1}{99}\)

\(2B=\frac{32}{99}\)

  \(B=\frac{32}{99}:2\)

  \(B=\frac{16}{99}\)

18 tháng 4 2023

\(B=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}\)
\(=\dfrac{1}{3}-\dfrac{1}{99}\)
\(=\dfrac{32}{99}\)

21 tháng 10 2018

\(S_n=1.1!+2.2!+3.3!+...+n.n!\)

\(\text{Ta có:}\) \(1.1!=2!-1!\)

\(2.2!=3!-2!\)

\(3.3!=4!-3!\)

.......

\(n.n!=\left(n+1\right)!-n!\)

Cộng vế với vế ta đc: 

\(S_n=1.1!+2.2!+3.3!+...+n.n!=2!-1!+3!-2!+4!-3!+...+\left(n+1\right)!-n!\)

\(=\left(n+1\right)!-1!=\left(n+1\right)!-1\)

21 tháng 10 2018

thank bn